Algebra II

Instructor: Olivier Bernardi Scribe: Alan Hou

Contents

Ι	Representation Theory	4
1	Algebras and Representation1.1Basic Definitions1.2Decomposition of Representation and Schur's Lemma	5 5 9
2	Representations of Finite Groups2.1Fundamental Isomorphisms2.2Characters2.3Frobenius Formula and Orthogonality2.4Restricted and Induced Representations	13 13 16 17 20
3	Finite Dimensional Algebras3.1Fundamental Isomorphism3.2Semisimplicity	24 24 27
II	Commutative Algebra	31
4	Preliminaries on Ideals4.1Basic Operations4.2Extension and Contraction of Ideals	33 33 34
5	Rings of Fractions 5.1 Definitions and Universal Properties	37 37 38
6	Localizations of Modules6.1Definitions and Construction as "Extension of Scalars"6.2Flatness for Modules of Fractions6.3Local Properties of Modules and Rings	42 42 44 48
7	Noetherian Rings, Noetherian Modules and Hilbert's Nullstellensatz7.1Closure Property for Noetherian7.2Hilbert's Nullstellensatz7.3Some Link to Algebraic Geometry	50 50 51 53
8	Primary Decomposition of Ideals	57

	8.1 8.2	Reduced Primary Decomposition	57 61
9	Integ 9.1 9.2 9.3	gral Dependence and Nakayama Lemma Nakayama Lemma	62 62 63 66
10		ekind Domains and Discrete Valuation Rings Basic Definitions and Results	69 69
III	(H	omological Algebra	73
11	11.1	ivational Examples Chains of Modules	74 74 78
12	12.1 12.2	itive Categories Category Notations	80 80 81 84
13	13.1 13.2	lian Categories, Chains, and Homology Abelian Categories	86 86 87 89
14	14.1 14.2 14.3	ved FunctorsProjective Resolutions, Injective CoresolutionsLong Exact SequencesTor FunctorsExt Functors	92 92 95 98 99
15	The	Category R-Mod Has Enough Injective	102

Part I Representation Theory

Algebras and Representation

1.1 Basic Definitions

Definition 1.1.1. Let *K* be a ring, then a *K*-**algebra** $(A, +, \cdot, \times)$ is a *K*-module $(A, +, \cdot)$ together with a bilinear operation multiplication $\times : A \times A \rightarrow A$ such that

$$\exists 1 \in A, 1 \times x = x \times 1 = x, \forall x \in A,$$

$$x \times (y \times z) = (x \times y) \times z.$$

Equivalently, $(A, +, \cdot)$ is *K*-module, $(A, +, \times)$ is a ring, and \times is bilinear, $(k \cdot x) \cdot y = x \times (k \cdot y) = k \cdot (x \times y)$.

From now on, *K* is a field, so the *K*–algebras are *K*–vector spaces (in particular, have basis).

Example 1.1.2. (1). Let $K = \mathbb{R}$, $A = \mathbb{R}[X_1, \dots, X_n]$ polynomials in *n* commuting variables.

(2). Let $K = \mathbb{R}$, $A = \mathbb{R}\langle X_1, \cdots, X_n \rangle$ polynomials in *n* non-commuting variables.

(3). For *V* a *K*-vector space, $A = (End(V), +, \cdot, \circ)$ is a *K*-algebra, where End(V) is linear maps from *V* to *V*.

(4). Let $B = (Mat_n(K), +, \cdot, \times)$ is a K-algebra, where Mat_n is $n \times n$ matrices and is isomorphic to $(End(K^n), +, \cdot, \circ)$ as representation of linear map of matrices.

Definition 1.1.3. Let A, B be K-algebra, $f : A \rightarrow B$ is an **algebra homomorphism** if respects the operations $+, \cdot, \times$. Equivalently, f is K-linear map and ring homomorphism.

Note that *f* is isomorphism if bijective and homomorphism and $A \simeq B$ means "isomorphic": $\exists f : A \rightarrow B$ isomorphism.

Remark 1.1.4. The ring-quotient construction gives an algebra quotient: if *I* is a (two-sided) ideal of *A* then $A/I = \{x+I, x \in A\}$ has structure of algebra (k(x+I) = kx + I).

Example 1.1.5. We see $\mathbb{R}[X]/X^n$ and $\mathbb{R}[X]/(X^n - 1)$ are algebras.

Remark 1.1.6. The fundamental isomorphism theorems for rings hold for algebras. In particular, if $f : A \to B$ is algebra homomorphism then $\text{Im}(f) \simeq A/\ker(f)$ as algebras.

Definition 1.1.7. Let *G* be a group. The **group algebra** K[G] is the *K*-vector space with basis *G* and multiplication in K[G] obtained by extending multiplication in *G K*-linearly.

Example 1.1.8. Let $G = S_3$, $K = \mathbb{C}$ and x = 2Id + 5(1,3), $y = \text{Id} - (1,2,3) \in \mathbb{C}[S_3]$. Then $x \times y = (2\text{Id} + 5(1,3)) \times (\text{Id} - (1,2,3)) = 2\text{Id} - 2(1,2,3) + 5(1,3) - 5(1,2)$.

Remark 1.1.9. We see K[G] is a natural setting to do computations about *G*.

Example 1.1.10. We take $x = \sum_{1 \le i < j \le n} (i, j) \in \mathbb{C}[S_n]$ sum of all transpositions. Then $x^k = \sum_{\pi \in S_n} c_{\pi}\pi$ where c_{π} = number of ways of getting π as product of K-transpositions.

Definition 1.1.11. Let *A* be a *K*-algebra, a **representation** of *A* is (V, ρ) where *V* is a nonzero *K*-vector space and ρ is a homomorphism of algebra $A \rightarrow \text{End}(V)$.

This is $\forall a \in A, \rho(a) \in \text{End}(V)$ is a linear map, that is, $\forall a, b \in A, \rho(a + b) = \rho(a) + \rho(b), \rho(a \times b) = \rho(a) \circ \rho(b), \rho(1) = \text{Id and } \rho(ka) = k\rho(a).$

Equivalently, upon denoting $a \cdot v$ for $\rho(a)(v)$ where $a \in A, v \in V$, we must have this action is bilinear and associative: $(a \times b) \cdot v = a \cdot (b \cdot v), 1 \cdot v = v$.

Definition 1.1.12. The dimension of (V, ρ) is $\dim_K(V)$. Also (V, ρ) is finite dimensional (f.d.) if $\dim_K(V)$ is finite.

Remark 1.1.13. If dim V = n, then $V \simeq K^n$ as vector spaces and we can view $\rho(a)$ as a matrix.

Example 1.1.14. Let $A = \mathbb{R}[X]$, given $f \in End(K^n)$, we can define a representation (V, ρ) by $V = K^n$, $\rho(P) = P(f)$ where $P = \sum c_i x^i$ and $P(f) = \sum c_i \underbrace{f \circ \cdots \circ f}_i$. In

matrix term, $\rho(P) = P(M) = \sum c_i M^i$ where M is matrix representing f.

Remark 1.1.15. If $\{g_i\}$ are generators of A, then a representation of A is determined by $\{\rho(g_i)\}$. The linear maps $\rho(g_i)$ must satisfy the same relations as g_i .

Example 1.1.16. A representation for $\mathbb{R}[X]/(X^n - 1)$ is determined by $\rho(X)$ satisfying $\rho(X)^n = \text{Id.}$

Remark 1.1.17. For A = K[G] a group algebra representations are uniquely determined by a group homomorphism

$$\rho: G \longrightarrow \mathrm{GL}(V),$$

where GL(V) are invertible matrices (for all $g \in G$, $\rho(g) \in GL(V)$ since $\rho(g^{-1}) = \rho(g)^{-1}$). The representations (V, ρ) of K[G] is then determined by linear extension $\rho(\sum c_g g) = \sum c_g \rho(g)$.

Example 1.1.18. (1). Let $G = C_n = \langle x \rangle / \langle \langle x^n = 1 \rangle \rangle$ cyclic group with *n* elements. For $M \in Mat_n(K)$ such that $M^n = Id$ we can define $\rho(x) = M$ (Here $K[C_n] \simeq \mathbb{R}[X]/(X^n - 1)$).

(2). For instance, for $K = \mathbb{C}$, $M = [\omega]$, $\omega = e^{2i\pi/m}$ the *m*-th root of unity gives a 1-dimensional representation $\rho(x^m) = [\omega^m]$.

Definition 1.1.19. The **regular representation** of *A* is $(V_{\text{reg}}, \rho_{\text{reg}})$ where $V_{\text{reg}} = A$ as *K*-vector space, $\rho_{\text{reg}}(a)$ is left multiplication by *a*, i.e., $\forall a \in A, v \in V_{\text{reg}} = A$, we have $a \cdot v = \rho(a)(v) = a \times v$ where \cdot is action and \times is multiplication in *A*.

Goal of Representation Theory:

(1). Describe all the *A* representations (in particular, ρ_{reg}) - decomposition into "irreducible representations".

(2). Use this description to simplify computation in *A*.

Remark 1.1.20. For *G* a group, the representation of the group algebra is specified by endomorphisms $\rho(g), g \in G$ such that $\rho(1) = \text{Id}$, and

$$\rho(gh) = \rho(g) \circ \rho(h), \forall g, h \in G.$$
(*)

Observe that $\forall g \in G, \rho(g)\rho(g^{-1}) = \rho(1) = \text{Id.}$ Hence $\forall g \in G, \rho(g) \in \text{Aut}(V)$ which are invertible linear maps $V \to V$. Note that (\star) means that $\rho : G \to \text{Aut}(V)$ is group homomorphism.

In summary, for a group G, the K-representations of the group algebra K[G] are uniquely determined by the group homomorphism $\rho : G \to Aut(V)$, where V is K-vector space.

The representation (V, ρ) is then extended to K[G] by linearity, i.e., $\rho(\sum c_g g) = \sum c_g \rho(g)$. In terms of operations: $(\sum c_g g) \cdot v = \sum c_g (g \cdot v)$.

Example 1.1.21. (1). Let $A = K[G], V = k, \rho(g) = \text{Id}_K$ for g, the trivial representation with dimension 1.

(2). Let $A = \mathbb{C}[c_m], c_m = \langle g \rangle / \langle \langle g^m = 1 \rangle \rangle = \{g^0 = 1, g^1, \cdots, g^{m-1}\}$. Then $V = \mathbb{C}, \rho(g^k) = \omega^k \mathrm{Id}_K$ where $\omega^m = 1$.

(3). Let $A = K[S_m], V = K^m, \forall \pi \in S_m, \rho(\pi) =$ "permutation matrices". $\pi \cdot e_j = e_{\pi(j)}, e_j = (0, \dots, 1, 0, \dots, 0)$ where the only 1 is at the *j*-th coordinate as e_j basis of K^m . Then $\pi \cdot (x_1, \dots, x_m) = (x_{\pi^{-1}(1)}, \dots, x_{\pi^{-1}(m)})$.

(4). Let A = K[G], for any G-set S, we can define K^S =vector space with basis S and representation given by $\rho(g) \cdot s = g \cdot s$ where the latter \cdot is g action. (Hence $\rho(g)(\sum c_S S) = \sum c_S(g \cdot S), \rho(g)$ is a representation in basis S).

Remark 1.1.22. The regular representation K[G] is of this form (action $G \frown G$ by left translation).

Definition 1.1.23. Let $(V, \rho), (V', \rho')$ be representation of *K*-algebra *A*, a homomorphism of representation is $\phi : V \to V'$ linear such that

$$\forall a \in A, \forall v \in V, \phi(a \cdot v) = a \cdot \phi(v),$$

where the first \cdot is the action on ρ and the second \cdot is the action on ρ' .

For notation, $\text{Hom}_A(V, V')$ is the vector space of representation homomorphism $V \rightarrow V'(\rho, \rho' \text{ are implicit})$.

Definition 1.1.24. The **isomorphism of representations** is bijective homomorphism of representations.

We say $V \simeq V'$ if there exists isomorphism $V \rightarrow V'$.

Remark 1.1.25. If $(V, \rho) \simeq (V', \rho')$, then there exists matrix P such that $\forall a \in A, P\rho(a)P^{-1} = \rho'(a)$ (Indeed, if P represents the isomorphism $V \rightarrow V'$, then $P\rho(a) = \rho'(a)P$). Equivalently, the matrices $\rho(a)$ and $\rho(a')$ are equal up to a change of basis.

Example 1.1.26 (Toy model). Let $A = \mathbb{C}[c_m], c_m = \langle g \rangle / \langle \langle g^m = 1 \rangle \rangle$, then (1). In the basis $\{g^0, \dots, g^{m-1}\}$ we have

$$\rho_{\rm reg}(g^j) = \begin{pmatrix} 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & 0 & \ddots & 1 \\ 0 & 0 & 0 & 0 & 0 & \vdots \\ 1 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \ddots & 0 & 0 & 0 & 0 \\ 0 & \dots & 1 & 0 & 0 & 0 \end{pmatrix} j.$$

Hence $\rho_{\text{reg}}(\sum_{i=0}^{m-1} k_i g^i)$ is the matrix with all 1 entries. Let $\omega = e^{2\pi i/m}$ and consider basis h_0, \dots, h_{m-1} where $h_j = \sum_{j=0}^{m-1} \omega^{jd} g^j$. In this basis, we have

$$\rho_{\rm reg}(g^j) = \begin{pmatrix} \omega^{-(1-1)j} = 1 & 0 \\ & \ddots & \\ 0 & \omega^{-(m-1)j} \end{pmatrix},$$

the diagonal matrix.

(2) The change of basis (g^0, \dots, g^{m-1}) to (h_0, \dots, h_{n-1}) simplifies computation. Actually this is equivalent to discrete Fourier transform (DFT). That is, regard $\sum k_i g^i$ as "function with value k_i " and h_i pointwise waves. Change of basis: write functions as linear combination of waves.

Convolution of function $\stackrel{DFT}{\longleftrightarrow}$ pointwise multiplication.

Useful for fast multiplication of polynomial or numbers.

1.2 Decomposition of Representation and Schur's Lemma

Definition 1.2.1. Let (V, ρ) be a *A*-representation, then

- a subrepresentation is a subspace $0 \neq W$ of V such that $\forall a \in A, a \cdot W \subseteq W$. In this case, $(W, \rho|_W)$ is a *A*-representation; and
- the representation (V, ρ) is **irreducible** if it has no proper subrepresentation.

Remark 1.2.2. For all $v \in V$, $A \cdot v = \langle a \cdot v, a \in A \rangle$ is a subrepresentation of V. Hence V is irreducible if and only if $\forall v \in V$, Av = V.

Lemma 1.2.3. If A is finite dimensional (e.g., A = K[G] where G is finite), then any irreducible representation of A is also finite dimensional.

Proof. We have V irreducible $\implies Av = V$ where dim $Av \leq \dim A < \infty$.

We say "irreps" to mean finite dimensional irreducible representations.

Remark 1.2.4. If $\phi \in \text{Hom}_A(V, W)$, then $\text{Im}(\phi)$, ker (ϕ) are subrepresentations.

Lemma 1.2.5 (1st Isomorphism Theorem). We have that

- *if* V *is* A-representation, and $W \subseteq V$ *subrepresentation, then* $V/W = \{v + W, v \in V\}$ *has structure of* A-*representation:* $a \cdot \overline{v} = \overline{a \cdot v}$ *where* $\overline{v} = v + W$ *; and*
- if $\phi \in \operatorname{Hom}_A(V, W)$ then $\operatorname{Im}(\phi) = V/\ker(\phi)$.

Definition 1.2.6. Let V_1, \dots, V_k be *A*-representations, the **direct sum** is the representation $V_1 \oplus \dots \oplus V_k$ with *A*-action $a \cdot (v_1, \dots, v_k) = (a \cdot v_1, \dots, a \cdot v_k)$. The direct sum can be viewed as vector spaces $\{(v_1, \dots, v_k)\}$ where $v_i \in V_i$. In terms of matrices we have

$$\rho(a) = \begin{pmatrix} \rho_1(a) & 0 \\ & \ddots & \\ 0 & & \rho_n(a) \end{pmatrix},$$

where each $\rho_i(a)$ is a block instead of just an entry.

For notation, we use mV to denote $V \oplus \cdots \oplus V$ for m times.

Lemma 1.2.7. If $W, W' \subseteq V$ subrepresentations such that $W + W' = V, W \cap W' = \{0\}$, then $V \simeq W \oplus W'$ as A-representations.

Proof. It suffices to consider the homomorphism:

$$\phi: W \oplus W' \longrightarrow V,$$
$$(w, w') \longmapsto w + w'.$$

Then the statement follows.

Example 1.2.8. (1). Let $A = K[S_m]$ and (V, ρ) representation defined by $\pi \cdot \rho_i = \rho_{\pi(i)}$, then $W = \{(x, \dots, x), x \in K\}$, which is isomorphic to the trivial representation, is subrepresentation. Also consider $W' = \{(x_1, \dots, x_n), \sum x_i = 0\}$ is a subrepresentation.

(2). Let $A = \mathbb{C}[S_3], \pi \cdot \rho_i = \rho_{\pi(i)}$. In basis $\{(1, 1, 1), (1, -1, 0), (1, 0, -1)\}$ where the first term is from W and the latter two are from W', we get

$$\rho((1,2)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}, \rho((1,3)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix},$$
$$\rho((1,3)) = \begin{pmatrix} \star & 0 & 0 \\ 0 & -1 & -1 \end{pmatrix},$$

and we have $\rho(a) = \begin{pmatrix} \star & 0 & 0 \\ 0 & \star & \star \\ 0 & \star & \star \end{pmatrix}$.

Lemma 1.2.9 (Matschke). Let G be a finite group, suppose char(k) does not divide |G|. Then any finite representation of G is isomorphic to a sum of irreps.

Proof. It suffices to show that $\forall W \subseteq V$ subrepresentations W, there exists $\overline{W} \subseteq V$ subrepresentations such that $V \simeq W \oplus \overline{W}$. That is, it suffices to show $W + \overline{W} = V$ and $W \cap \overline{W} = \{0\}$. We start with $W' \subseteq V$ subspace such that W + W' = V and $W \cap W' = \{0\}$.

Let $\phi : V \to V$ linear such that $\phi|_W = \text{Id}_W$ and $\phi|_{W'} = 0$. We have $W' = \ker \phi$ but $\phi \notin \text{End}_{K[G]}(V)$ and W' not subrepresentation a priori.

Let
$$\psi = \sum_{g \in G} \rho(g^{-1}) \circ \phi \circ \rho(g)$$
 (i.e., $\psi(v) = \sum_{g \in G} g^{-1} \phi(gv)$). Thus we have

• $\psi \in \operatorname{End}_{K[G]}(V)$ because $\forall h \in G, \forall v \in V$, we have

$$\psi(hv) = \sum_{g \in G} g^{-1}\phi(ghv) = h \sum_{g \in G} h^{-1}g^{-1}\phi(ghv) = h \sum_{g \in G} g^{-1}\phi(gv) = h\psi(v).$$

Hence $\overline{W} = \ker \psi$ is a subspace. We have

- Im $\psi = W$ because first Im $\psi \subseteq \sum_g g^{-1} \text{Im}\phi = \sum_g g^{-1}w \subseteq \sum w = W$. Second, we have $\forall w \in W, \psi(w) = \sum g^{-1}\phi(gw) = \sum_g g^{-1}gw = |G|w \neq 0$ in k (this is why we need the condition for char(k)). Thus $w = \psi(\frac{w}{|G|})$ and $w \in \text{Im}\psi$. We have
- Im $\psi \cap \ker \psi = \{0\}$ because $\forall v \in \operatorname{Im} \psi \cap \ker \psi$ we have $v = \psi(\frac{v}{|G|}) = 0$. We have

• Im ψ + ker ψ = V' because $v = \psi(\frac{v}{|G|}) + (v - \psi(\frac{v}{|G|}))$.

Hence the lemma.

Lemma 1.2.10 (Schur's Lemma). Let *K* be algebraically closed, let *A* be a *K*-algebra, let *V*, *W* be irreducible representations of *A*, then

$$\dim(\operatorname{Hom}_{A}(V, W)) = \begin{cases} 1 & \text{if } V \simeq W, \\ 0 & \text{otherwise} \end{cases}$$

Proof. Let $\phi \in \text{Hom}_A(V, W)$, $\phi \neq 0$ and $\text{ker}(\phi)$ is subspace of V irreducible, then $\text{ker } \phi = 0$. Similarly, $\text{Im}\phi$ is subspaces of W irreducible, thus $\text{Im}\phi = W$. Hence ϕ is isomorphism. Thus if $V \not\simeq W$ then $\text{Hom}_A(V, W) = \{0\}$.

Suppose now $V \simeq W$. Then up to composing by an isomorphism, we can assume W = V. We want to show $\dim(\operatorname{End}_A(V)) = 1$. We claim $\operatorname{End}_A(V) = \{\lambda \operatorname{Id}_V, \lambda \in k\}$. Now for one direction \supseteq , it is obvious. For the other direction \subseteq , let $\phi \in \operatorname{End}_A(V), \forall \lambda \in k$, we have $\phi - \lambda \operatorname{Id} \in \operatorname{End}_A(V) = \operatorname{Aut}_A(V) \cup \{0\}$. Since kis algebraically closed, $\exists \lambda \in k$ eigenvalue of ϕ (root of characteristic polynomial), then $\ker(\phi - \lambda \operatorname{Id}) \neq 0$. Therefore $\phi - \lambda \operatorname{Id}$ is not isomorphism thus $\phi - \lambda \operatorname{Id} = 0$. \Box

Corollary 1.2.11. Let K be algebraically closed, let V_1, \dots, V_k be non-isomorphic irreps of A, then

$$\dim(\operatorname{Hom}_{A}(\bigoplus_{i=1}^{k} n_{i}V_{i}, \bigoplus_{j=1}^{k} m_{j}V_{j})) = \sum_{i=1}^{k} n_{i}m_{i}.$$

In particular, if $U \simeq \bigoplus m_i V_i$, then $m_i = \dim(\operatorname{Hom}_A(V_i, U))$. So the multiplicities of irreps in a representation are uniquely defined.

Before proving this corollary, we first claim and prove some lemma.

Lemma 1.2.12. Let V, V_1, \dots, V_k be A-representations, then

(1). Hom_A $(V, \bigoplus_i V_i) \simeq \bigoplus_i \text{Hom}_A(V, V_i)$ as vector spaces; and

(2). Hom_A($\bigoplus_i V_i, V$) $\simeq \bigoplus_i \operatorname{Hom}_A(V_i, V)$ as vector spaces.

Hence, $\operatorname{Hom}_{A}(\bigoplus_{i} V_{i}, \bigoplus W_{j}) \simeq \bigoplus_{i,j} \operatorname{Hom}_{A}(V_{i}, W_{j}).$

Proof of Lemma 1.2.12. (1). Consider isomorphism given by

$$\bigoplus_{i} \operatorname{Hom}_{A}(V, V_{i}) \longrightarrow \operatorname{Hom}_{A}(V, \bigoplus_{i} V_{i}),$$
$$(\phi_{1}, \cdots, \phi_{k}) \longmapsto (\phi : v \mapsto (\phi_{1}(v), \cdots, \phi_{k}(v))).$$

(2). Consider isomorphism given by

$$\bigoplus_{i} \operatorname{Hom}_{A}(V_{i}, V) \longrightarrow \operatorname{Hom}_{A}(\bigoplus_{i} V_{i}, V),$$
$$(\phi_{1}, \cdots, \phi_{k}) \longmapsto (\phi : (v_{1}, \cdots, v_{k}) \mapsto \sum_{i} \phi_{i}(v_{i}))$$

Hence the lemma.

Then we can prove the corollary.

Proof of Corollary **1.2.11***.* We have

$$\dim(\operatorname{Hom}_{A}(\bigoplus_{i} n_{i}V_{i}, \bigoplus_{j} m_{j}V_{j})) = \dim(\bigoplus_{i,j} n_{i}m_{j}\operatorname{Hom}_{A}(V_{i}, V_{j}))$$
$$= \sum_{i,j} n_{i}m_{j}\dim(\operatorname{Hom}_{A}(V_{i}, V_{j}))$$
$$= \sum_{i,j} n_{i}m_{j}\delta_{ij} = \sum_{i=1}^{k} n_{i}m_{j},$$

where δ_{ij} is Kronecker delta by Schur's Lemma.

Representations of Finite Groups

 \boldsymbol{Z}

2.1 Fundamental Isomorphisms

Assumptions: Let *G* be a finite group, *K* be algebraically closed, $char(K) \nmid |G|$ (so Matschke's and Schur's Lemmas hold). "Irreps of *G*" is the irreps of *K*[*G*].

Theorem 2.1.1. Group G has finitely many (non-isomorphic) irreducible representations V_1, \dots, V_r . Moreover $V_{\text{reg}} \simeq \bigoplus_{i=1}^r \dim(V_i)V_i$ as G-representations.

Example 2.1.2. Let $K = \mathbb{C}, G = S_3$. We know 3 irreps already. They are

 V_1 = trivial representation. ($\rho_1(\pi) = \text{Id}_{\mathbb{C}}$),

 V_2 = sign representation. ($\rho_2(\pi) = \operatorname{sgn}(\pi) \operatorname{Id}_{\mathbb{C}}$),

 V_3 of dimension 2 determined by

$$\rho((1,2)) = \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}, \quad \rho((1,3)) = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}.$$

There are no other irreps and

$$\mathbb{C}[S_3] \simeq V_1 \oplus V_2 \oplus 2V_3$$

as S_3 -representations.

Equivalently, there exists basis of $\mathbb{C}[S_3]$ in which

$$\rho_{\rm reg}((1,2)) = \begin{pmatrix} 1 & & & \\ & -1 & & & \\ & & -1 & -1 & \\ & & 0 & 1 & \\ & & & -1 & -1 \\ & & & 0 & 1 \end{pmatrix},$$

and

$$\rho_{\rm reg}((1,3)) = \begin{pmatrix} 1 & & & \\ & -1 & & & \\ & & 1 & 0 & \\ & & -1 & -1 & \\ & & & 1 & 0 \\ & & & & -1 & -1 \end{pmatrix}.$$

Proof of Theorem 2.1.1. By Matschke's Lemma, we have $V_{\text{reg}} \simeq \bigoplus_i m_i V_i$ for some $m_i \ge 0, V_i$ irreps. By Schur's Lemma, we have $m_i = \dim(\text{Hom}_G(V_{\text{reg}}, V_i))$.

For (V, ρ) , G-representations, let $H_V = \text{Hom}_G(V_{\text{reg}}, V)$. We claim that

$$H_V = \{\epsilon_v, v \in V\}, \text{ where } \epsilon_v : V_{\text{reg}} = K[G] \longrightarrow V,$$
$$x \longmapsto x \cdot v.$$

For one direction (\supseteq) : we have for all $v \in V$, that $\epsilon_v \in H_V$ since $\forall a \in K[G]$, we have $\epsilon_v(a \cdot x) = (a \cdot x) \cdot v = (a \times x) \cdot v = a \cdot (x \cdot v) = a \cdot \epsilon_v(x)$. For the other direction (\subseteq) : for all $\phi \in H_V$, we have $\phi = \epsilon_{\phi(1_G)}$, indeed, $\forall x \in V_{\text{reg}}$, we have $\phi(x) = \phi(x \cdot 1_G) = x \cdot \phi(1_G) = \epsilon_{\phi(1_G)}(x)$.

Conclusion:

$$\epsilon: V \longrightarrow H_v,$$
$$v \longmapsto \epsilon_v,$$

is a surjective linear map. Also, ϵ is injective since $v \in \text{ker}(\epsilon)$ implies $\epsilon_v(1_G) = 0$, which means $1_G \cdot v = 0$ so v = 0.

Hence ϵ is bijective linear map. Hence $\dim(H_V) = \dim(V)$. This concludes the proof.

Theorem 2.1.3 (Fundamental Isomorphism for Group Algebra). Let V_1, \dots, V_R be the non-isomorphic irreps of V. Then

$$\Gamma: K[G] \longrightarrow \bigoplus_{i=1}^{R} \operatorname{End}(V_i),$$
$$x \longmapsto (\rho_1(x), \cdots, \rho_R(x)),$$

is an isomorphism of algebras.

Example 2.1.4. (1). Let $G = S_3, K = \mathbb{C}, R = 3$, we have

$$\rho((1,2)) = ([1], [-1], \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}), \rho((1,3)) = ([1], [-1], \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}),$$

and $\mathbb{C}[S_3]$ isomorphic to algebra of matrix in $Mat_4(\mathbb{C})$ of form

(2). Let $G = C_n, K = \mathbb{C}, \Gamma$ is given by DFT, we have

$$\rho_{\rm reg}(g^k) = \begin{pmatrix} \omega^{-(1-1)k} = 1 & 0 \\ & \ddots & \\ 0 & \omega^{-(m-1)k} \end{pmatrix}$$

We have $\mathbb{C}[S_n] \xrightarrow{\Gamma=DFT}$ algebra of diagonal matrices.

Proof of Theorem 2.1.3. By definition of *G*-representations, for all i, ρ_i is a homomorphism of algebra, hence Γ is a homomorphism of algebra.

We have $\dim(K[G]) = |G|$. We see $\dim(\bigoplus \operatorname{End}(V_i)) = \sum \dim(\operatorname{End}(V_i)) = \sum \dim(V_i)^2$. Moreover, by Theorem 1.3.1., we have

$$\dim(K[G]) = \dim(\bigoplus \dim(V_i)V_i) = \sum \dim(V_i) \dim(V_i).$$

We have Γ is injective since $x \in \ker(\Gamma)$, which implies $\forall i, \rho_i(x) = 0$. This means that $\rho_{\text{reg}}(x) = 0$ and hence $x = x \cdot 1_G = \rho_{\text{reg}}(x)(1) = 0$.

Corollary 2.1.5. We have number of non-isomorphic irreps of G = number of conjugacy classes.

Example 2.1.6. For S_n , we have number of irreps = number of "cyclic types" = number of partitions of n.

Proof of Corollary 2.1.5. Theorem 2.1.3 implies $Z(K[G]) \stackrel{\Gamma}{\simeq} Z(\bigoplus_{i=1}^{R} \operatorname{End}(V_i))$, we take dimension on both sides, then $Z(\bigoplus \operatorname{End}(V_i)) = \bigoplus Z(\operatorname{End}(V_i))$. Moreover, $Z(\operatorname{End}(V_i)) = \{\lambda \operatorname{Id}_{V_i}, \lambda \in k\}$ has dim = 1. This implies that dim $(\bigoplus_{i=1}^{R} \operatorname{End}(V_i)) = \sum_{i=1}^{R} \dim(\operatorname{End}(V_i)) = R$.

Also $x \in Z(K[G])$ if and only if $\forall h \in G$, $hxh^{-1} = x$. Hence $x = \sum_{g \in G} C_g g \in Z$ if and only if $\forall g, g'$ conjugate, we have $C_g = C_{g'}$ (i.e., coefficients are constant over conjugate class).

Together we see that basis of *Z* is C_1, \dots, C_k where $C_i = \sum_{g \in G_i} g$, where G_i are conjugacy class of *G*. Hence dim(*Z*) = number of conjugacy classes and hence $\sum_{i=1}^n \dim(\operatorname{End}(V_i)) = R$ = number of irreps.

Consider $x = \sum_{i < j} (i, j) \in Z(\mathbb{C}[S_n])$. What is x^k ? Let V_1, \dots, V_R be irreps of G, and let $P_i = \Gamma^{-1}(0, \dots, \mathrm{Id}_{V_i}, \dots, 0)$. Since $(0, \dots, \mathrm{Id}_{V_i}, \dots, 0)$ form a basis of $Z(\bigoplus \mathrm{End}(V_i))$, we have $\{P_1, \dots, P_R\}$ is a basis of Z(K[G]). Then we have the following definition:

Definition 2.1.7. This basis satisfies $P_iP_j = \delta_{ij}P_i$ where the δ_{ij} is the Kronecker delta. These are the **idempotents** of the group algebra.

They make computation in Z(K[G]) easy. For instance, if $x = \sum c_i P_i$ then $x^k = \sum c_i^k P_i$. In the C_n example, P_i are the pointwise waves and multiplication in $\mathbb{C}[C_n]$ is "simplified" by DFT.

2.2 Characters

Definition 2.2.1. Let *A* be a *K*-algebra, let (V, ρ) be *A*-representations, the **character** of (V, ρ) is

$$\chi_V : A \longrightarrow k,$$
$$a \longmapsto \operatorname{Tr}(\rho(a)),$$

where Tr is the trace of the matrices.

This is well-defined, that is, does not depend on basis used to write $\rho(a)$ because the trace of $\operatorname{Tr}(P^{-1}MP) = \operatorname{Tr}(PP^{-1}M) = \operatorname{Tr}(M)$.

Example 2.2.2. If (V, ρ) is the *G*-representations associated to a *G*-set *S*, then $\forall g \in G$, we have $\chi(g)$ = number of elements of *S* fixed by *g*.

Remark 2.2.3. We have

- $\chi_V(1_A) = \operatorname{Tr}(\operatorname{Id}_V) = \dim(V).$
- We have $\chi_V \in A^* = \text{Hom}(A, K)$ the dual space.
- If V ≃ W, then χ_V = χ_W because V, W are equal up to change of basis and Tr(PMP⁻¹) = Tr(M).

Notation: Let G be a finite group, then we say

$$\mathcal{F}(G) = K[G]^* (\stackrel{bijective}{\longleftrightarrow} \{f : G \to K\}).$$

Also we define

$$C\mathcal{F}(G) = \{\phi \in F(G) | \phi(g) = \phi(g'), \forall g, g' \text{ conjugate in } G\}$$

 $(\stackrel{bijective}{\longleftrightarrow} \{f : G \to K \text{ such that } f \text{ is constant on conjugacy class}\}).$

Vector space of **class functions** on *G*.

Remark 2.2.4. We have $\mathcal{F}(G) = K[G]^* \simeq K[G]$ as vector spaces and $C\mathcal{F}(G) \simeq Z(K[G])^* \simeq Z(K[G])$ as vector spaces.

In fact, we have that $\chi_V \in \mathcal{CF}(G)$.

Theorem 2.2.5. Let G be finite group, let V_1, \dots, V_R be the irreps, the characters χ_1, \dots, χ_R of the irreps form a basis of $C\mathcal{F}(G)$.

Example 2.2.6. Let $G = S_3$, $K = \mathbb{C}$, denote V_1 trivial representation, V_2 sign representation, V_3 defining trivial, then we have the table

Character					
	χ_1	χ_2	χ_3		
$C_1 = \{ \mathrm{Id} \}$	1	1	2		
$C_2 = \{(1,2), (2,3), (1,3)\}$	1	-1	0		
$C_3 = \{(1,2,3), (3,2,1)\}$	1	1	-1		

and we have $\chi_3 =$ number of fixed points -1. Theorem 1.4.5 says χ_1, χ_2, χ_3 form a basis of $C\mathcal{F}(S_3) \equiv \mathbb{C}^3$ (i.e., columns are basis of \mathbb{C}^3).

Proof of Theorem 2.2.5. First we have $\dim(C\mathcal{F}(G)) =$ number of conjugacy classes = number of irreps = R. This means that it suffices to show χ_1, \dots, χ_R are independent. Now we show this claim.

Indeed, consider $P_i = \Gamma^{-1}(0, \cdots, \text{Id}_{V_i}, \cdots, 0)$ idempotents. We have

$$\chi_j(P_i) = \operatorname{Tr}(\rho_j(P_i)) = \operatorname{Tr}(\delta_{ij}\operatorname{Id}_{V_i}) = \delta_{ij}\dim(V_j).$$

In particular, we have $\sum_{j=0}^{n} k_j \chi_j = 0$ thus $\forall j, \sum k_j \chi_j(P_i) = 0$. Hence for any *i*, we have $k_i = 0$.

Remark 2.2.7. Recall that $\{P_1, \dots, P_R\}$ forms a basis of Z(K[G]). Proof shows that $\{\frac{\chi_1}{\dim(V_1)}, \dots, \frac{\chi_R}{\dim(V_R)}\}$ is the dual basis $\{P_1^* \cdots P_R^*\}$ of $Z(K[G])^* \simeq C\mathcal{F}(G)$.

2.3 Frobenius Formula and Orthogonality

Notation:

- Let C_1, \dots, C_R be the conjugacy classes of G, let χ_1, \dots, χ_R be the characters of irreps of G, let $\chi_i(C_j) = \chi_i(g)$ for any $g \in C_j$.
- For $\mathcal{D}_1, \dots, \mathcal{D}_k$ be conjugacy classes ($\mathcal{D}_i \in \{C_1, \dots, C_R\}$), we denote

$$F(\mathcal{D}_1, \cdots, \mathcal{D}_k) = \text{ cardinality of } \{(g_1, \cdots, g_k) | g_i \in \mathcal{D}_i, g_1, \cdots, g_k = 1_G \}.$$

Then we have the theorem:

Theorem 2.3.1 (Frobenius Formula). *For any* $k \ge 1$ *and for any* $\mathcal{D}_1, \dots, \mathcal{D}_k$ *, we have*

$$F(\mathcal{D}_1,\cdots,\mathcal{D}_k) = \frac{|\mathcal{D}_1|\cdots|\mathcal{D}_k|}{|G|} \sum_{i=1}^R \frac{\chi_i(\mathcal{D}_1)\cdots\chi_i(\mathcal{D}_k)}{\dim(V_i)^{k-2}}.$$

Proof. Let $D_i = \sum_{g \in \mathcal{D}_i} g \in Z(K[G])$, note that $F(\mathcal{D}_1, \dots, \mathcal{D}_n) = \text{coefficients of } 1_G$ in $D_1 \cdots D_k$. Then observe that

$$\chi_{\text{reg}}(g) = \begin{cases} |G| & \text{if } g \in 1_G, \\ 0 & \text{otherwise (because } gh \neq h, \forall h \in G) \end{cases}$$

Thus $\chi_{\text{reg}}(x) = |G|$ multiplies the coefficient of 1_G in x. Hence $F(\mathcal{D}_1, \dots, \mathcal{D}_n) = \frac{1}{|G|}\chi_{\text{reg}}(D_1 \cdots D_k)$. Moreover, $V_{\text{reg}} \simeq \bigoplus \dim(V_i)V_i$ thus $\chi_{\text{reg}} = \sum(V_i)\chi_i$. Therefore, we have

$$F(\mathcal{D}_1,\cdots,\mathcal{D}_n) = \frac{1}{|G|} \sum_{i=1}^R \dim(V_i) \chi_i(D_1\cdots D_n)$$

By fundamental isomorphism $\Gamma : K[G] \to End(V_i)$, we have $D_j \in Z(K[G])$ which implies that for any i, $\rho_i(D_j) = k_{ij} Id_{V_i}$ for some $k_{ij} \in k$. Moreover, $\chi_i(D_j) = k_{ij} \dim(V_i)$ thus we see

$$k_{ij} = \frac{\chi_i(D_j)}{\dim(V_i)} = \frac{|\mathcal{D}_j|\chi_i(\mathcal{D}_j)}{\dim(V_i)}$$
$$\implies \forall i, \rho_i(D_1 \cdots D_j) = \rho_i(D_1) \cdots \rho_i(D_k) = \prod_{j=1}^k (\frac{\mathcal{D}_j\chi_i(\mathcal{D}_j)\mathrm{Id}_{V_i}}{\dim(V_i)})$$
$$\implies \forall i, \chi_i(D_1 \cdots D_j) = \frac{\prod_{j=1}^k |\mathcal{D}_j|\chi_i(\mathcal{D}_j)}{\dim(V_i)^{k-1}}$$
$$\implies F(\mathcal{D}_1 \cdots \mathcal{D}_n) = \frac{1}{|G|} \sum_{i=1}^R \frac{\prod_{j=1}^k |\mathcal{D}_j|\chi_i(\mathcal{D}_j)}{\dim(V_i)^{k-2}}.$$

From now on we take $K = \mathbb{C}$.

Definition 2.3.2. We define an **inner product** \langle, \rangle on $\mathcal{F}(G) = K[G]^*$ by such that for all $\phi, \psi \in \mathcal{F}(G)$, we have

$$\langle \phi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \phi(g) \overline{\psi(g)},$$

where $\overline{\cdot}$ is complex conjugate.

Theorem 2.3.3 (Orthogonal Relations). Let χ_1, \dots, χ_R be the characters of irreps. We have

- (1). For all $i, j, \langle \chi_i, \chi_j \rangle = \delta_{ij}$. In other words, χ_1, \dots, χ_R forms an orthogonal basis of $C\mathcal{F}(G)$.
- (2). For all i, j, we have

$$\sum_{k=1}^{R} \chi_k(C_i) \overline{\chi_k(C_j)} = \delta_{i,j} \frac{|G|}{|C_i|},$$

where C_1, \cdots, C_R are the conjugacy classes.

Lemma 2.3.4. Let χ be a character of G, then we have

$$\chi(g^{-1}) = \overline{\chi(g)}, \forall g \in G.$$

Proof. Exercise.

Proof of Theorem 2.3.3. For (2), we have

$$\sum_{k=1}^{R} \chi_k(C_i) \overline{\chi_k(C_j)} = \sum_{k=1}^{R} \chi_k(C_i) \chi_k(C_j^{-1}) = \frac{|G|}{|C_i||C_j|} F(C_i, C_j^{-1})$$
$$= \frac{|G|}{|C_i||C_j|} \delta_{ij} |C_i| = \frac{|G|}{|C_i|} \delta_{ij}.$$

For (1), let $M = \left(\frac{\sqrt{|C_i|}\chi_j(C_i)}{\sqrt{|G|}}\right)$, then we have

$$(2) \Longrightarrow M \cdot \overline{M^T} = \mathrm{Id} \Longrightarrow M^T \cdot \overline{M} = \mathrm{Id}$$

$$\implies \frac{1}{|G|} \sum_{k} |\mathcal{C}_{k}| \chi_{i}(\mathcal{C}_{k}) \overline{\chi_{j}(\mathcal{C}_{k})} = \delta_{ij} \iff \frac{1}{|G|} \sum_{g \in G} \chi_{i}(g) \overline{\chi_{j}(g)} = \delta_{ij}.$$

Hence the corollary.

Corollary 2.3.5. Let V, V' be finite dimensional G-representations and let χ, χ' be their characters. Then we have

$$V \simeq V' \iff \chi = \chi'.$$

Proof. (\Longrightarrow): If $V \simeq V'$, then there exists an invertible matrix *P* such that

$$\forall x \in K[G], \rho'(x) = P^{-1}\rho(x)P.$$

Hence

$$\forall x \in K[G], \chi'(x) = \operatorname{Tr}(\rho'(x)) = \operatorname{Tr}(P^{-1}\rho(x)P) = \operatorname{Tr}(\rho(x)) = \chi(x).$$

(\Leftarrow): Suppose $\chi = \chi'$, we can decompose V, V' into irreps:

$$V \simeq \bigoplus_{i=1}^r m_i V_i \text{ and } V' \simeq \bigoplus_{i=1}^r m'_i V_i.$$

This gives $\chi = \sum_{i=1}^{r} m_i \chi_i = \chi = \chi' = \sum_{i=1}^{r} m'_i \chi_i$. Hence by Theorem 2.2.5, we have $m_i = m'_i$ for all *i*. Thus $V \simeq V'$.

Corollary 2.3.6. Suppose $K = \mathbb{C}$. Let V, V' be G-representations and let χ, χ' be their characters. Let χ_1, \dots, χ_r be the characters of the irreps V_1, \dots, V_r of G. Then

- (a). The multiplicity m_k of V_k in V is $\langle \chi, \chi_k \rangle$.
- (b). We have $\langle \chi, \chi' \rangle = \sum_{k=1}^{r} m_k m'_k = \dim(\operatorname{Hom}_G(V, V'))$ where we have m_k, m'_k multiplicities of V_k in V, V'.

Proof. The characters χ_1, χ_r are orthonormal for the inner product, so

- (a). We have $V \simeq \bigoplus_{i=1}^{r} m_i V_i \Longrightarrow \chi = \sum_{i=1}^{r} m_i \chi_i \Longrightarrow \langle \chi, \chi_k \rangle = \langle \sum_i m_i \chi_i, \chi_k \rangle = m_k.$
- (b). We have $\langle \chi, \chi' \rangle = \langle \sum_i m_i \chi_i, \sum_j m'_j \chi_j \rangle = \sum_{k=1}^r m_k m'_k = \dim(\operatorname{Hom}_G(V, V'))$ where the last equality is by the corollary of Schur's Lemma.

Hence the corollary.

Exercise: Let $G = S_n$ and let V be the representation given by $V = C^n$ and $\pi \cdot e_i = e_{\pi(i)}$ for all i in [n]. Multiplicity of trivial representation in V = ?

We see $\langle \chi_V, \chi_{trivial} \rangle = \frac{1}{n!} \sum_{\pi \in S_n} \operatorname{fix}(\pi) = \text{average number of fixed points} = 1$ where $\operatorname{fix}(\pi)$ is the number of fixed points of π .

Note that V is the sum of 2 irreps $\iff \langle \chi_V, \chi_V \rangle = \frac{1}{n!} \sum_{\pi \in S_n} \operatorname{fix}(\pi)^2 = 2.$

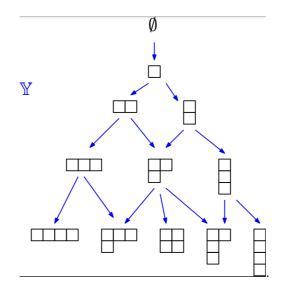
2.4 Restricted and Induced Representations

Definition 2.4.1. Let *H* be a subgroup of *G*. Any representation (V, ρ) of *G* gives a representation of *H* by taking the restriction $\rho|_H : H \to \text{End}(V)$. We denote by $V_{G \to H}$ this **restricted representation** of *H*.

Remark 2.4.2. For an irreducible repres of *G*, the restriction may not be irreducible.

Example 2.4.3. Irreps of symmetric group (not proved in this class).

Recall conjugacy classes of $S_n \iff$ cyclic types \iff "partitions of n'' = ways of writing n as a sum of positive integers $n = n_1 + \cdots + n_k$ (with n_i arranged in weakly decreasing order) \iff "Young diagram",



Hence the number of irreps of S_n = number of partitions of n = Young diagrams with n boxes.

Fact: one can index the irreps of S_n by the Young diagram in such a way that the set of irreps of S_n is V_{λ} , λ Young diagram of size n and

$$(V_{\lambda})_{S_n \to S_{n-1}} = \bigoplus_{\mu \subset \lambda \text{ obtained by deleting one corner box}} V_{\mu}.$$

Corollary 2.4.4. We have $\dim(V_{\lambda}) =$ number of paths from \emptyset to λ in the Young lattice.

Question: For $H \lhd G$, how can we get a repres of G from a repres of H? **Reminder**: We have G acts on G/H by left-translation: If $G/H = \{a_1H, \dots, a_kH\}$, this action is

$$\alpha: G \longrightarrow \operatorname{Perm}(G/H),$$
$$\alpha(g): a_i H \longmapsto g a_i H.$$

This action gives a representation (W, τ) where the matrices $\tau(g) = (t_{i,j})_{i,j \in [k]}$ are permutation matrices: $t_{i,j} = 1$ if $ga_jH = a_iH$ and 0 otherwise.

Definition 2.4.5. Let *H* be a subgroup of *G*. Let a_1, \dots, a_k in *G* be representatives of left-cosets: $G/H = \{a_1H, \dots, a_kH\}$. Let (V, ρ) be a *H*-representation. The **induced representation** $(V_{H\to G}, \rho_{H\to G})$ (for our choice a_1, \dots, a_k) is the

G-representation with matrices

$$\forall g \in G, \rho_{H \to G}(g) = \begin{pmatrix} M_{1,1}(g) & M_{1,k}(g) \\ & \ddots & \\ M_{k,1}(g) & M_{k,k}(g) \end{pmatrix},$$

where $M_{i,j}(g) = \begin{cases} \rho(a_i^{-1}ga_j) & \text{if } ga_jH = a_iH(\text{ equivalently } a_i^{-1}ga_j \in H), \\ 0 & \text{otherwise.} \end{cases}$

Lemma 2.4.6. We have the following:

- (1). The tuple $(V_{H\to G}, \rho_{H\to G})$ is indeed a representation: this means that for all g, g', we have $\rho_{H\to G}(gg') = \rho_{H\to G}(g) \circ \rho_{H\to G}(g')$.
- (2). Changing the representatives a_i gives an isomorphic representation.
- (3). The character $\chi_{H\to G}$ of $V_{H\to G}$ is related to the character χ of V as follows:

$$\forall g \in G, \chi_{H \to G}(g) = \frac{1}{|H|} \sum_{f \in G \mid f^{-1}gf \in H} \chi(f^{-1}gf).$$

Proof. We prove (1), (3), and (2) respectively.

(1). Multiplying by blocks we get

$$\rho_{H \to G}(g) \rho_{H \to G}(g') = \begin{pmatrix} B_{i,j} \\ & \end{pmatrix}, B_{i,j} = \sum_{d=1}^{k} M_{i,d}(g) M_{d,j}(g'),$$

with $B_{i,j} = 0$ unless there exists d in [k] such that $g'a_jH = a_dH$ and $ga_dH = a_iH$ (and this occurs if and only if $gg'a_jH = a_iH$). In this case, we have

$$B_{i,j} = M_{i,d}(g)M_{d,j}(g') = \rho(a_i^{-1}ga_d)\rho(a_d^{-1}g'a_j) = \rho(a_i^{-1}gg'a_j) = M_{i,j}(gg').$$

Hence $\rho_{H\to G}(g) \circ \rho_{H\to G}(g') = \rho_{H\to G}(gg').$

(3). We have

$$\chi_{H \to G}(g) = \sum_{i \mid a_i^{-1} g a_i \in H} \chi(a_i^{-1} g a_i) = \sum_{i \mid a_i^{-1} g a_i \in H} \frac{1}{|H|} \sum_{h \in H} \chi(h^{-1} a_i^{-1} g a_i j)$$
$$= \frac{1}{|H|} \sum_{f \in G \mid f^{-1} g f \in H} \chi(f^{-1} g f),$$

where $f = a_i h$ and the last equality is from if aH = bH, then $a^{-1}ga \in H$ if and only if $b^{-1}gb \in H$.

(2). By (3), character does not depend on a_1, \dots, a_k . Since a different choice of a_1, \dots, a_k gives the same character, the corresponding repres are isomorphic (by a previous corollary).

Corollary 2.4.7 (Frobenius Reciprocity). Suppose $K = \mathbb{C}$, let H be a subgroup of G, let V be a representation of H with character χ and let V' be a representation of G with character χ' . Then we have

$$\langle \chi_{H \to G}, \chi' \rangle = \langle \chi, \chi'_{G \to H} \rangle$$
 (inner product of $C[G]^*$ and $C[H]^*$).

Proof. We have

$$\begin{split} \langle \chi_{H \to G}, \chi' \rangle &= \frac{1}{|G|} \sum_{g \in G} \chi_{H \to G}(g) \overline{\chi'(g)} = \frac{1}{|G||H|} \sum_{g, f \in G | f^{-1}gf \in H} \chi(f^{-1}gf) \overline{\chi'(g)} \\ &= \frac{1}{|G||H|} \sum_{g, f \in G | f^{-1}gf \in H} \chi(f^{-1}gf) \overline{\chi'(f^{-1}gf)}, \end{split}$$

hence

$$\begin{split} \langle \chi_{H \to G}, \chi' \rangle &= \frac{1}{|G||H|} \sum_{h \in H} \sum_{g, f \in G \mid f^{-1}gf = h} \chi(h) \overline{\chi'(h)} = \frac{1}{|G||H|} \sum_{h \in H} |G|\chi(h) \overline{\chi'(h)} \\ &= \langle \chi, \chi'_{G \to H} \rangle. \end{split}$$

Hence the proof.

Remark 2.4.8. For V, V' irreps of H and G respectively, this means that (via a previous corollary) multiplicity of V' in $V_{H\to G}$ = multiplicity of V in $V'_{H\to G}$.

Example 2.4.9. Consider $S_{n-1} \lhd S_n$. For any Young diagram λ we have

$$(V_{\lambda})_{S_{n-1} \to S_n} = \bigoplus_{\mu \supset \lambda \text{ obtained by adding one box}} V_{\mu}.$$

Finite Dimensional Algebras

3.1 Fundamental Isomorphism

Throughout this subsection, we assume k algebraically closed, A is finite dimensional K-algebra (we do not have the Matschke Lemma).

Theorem 3.1.1 (Density Theorem). Let $(V_1, \rho_1), \dots, (V_R, \rho_R)$ be non-isomorphic irreps of A, that is, for $v \in V_i, A \cdot v = V_i$. Let

$$\Gamma: A \longrightarrow \bigoplus_{i=1}^{R} \operatorname{End}(V_{i}),$$
$$x \longmapsto (\rho_{1}(x), \cdots, \rho_{R}(x)).$$

Then Γ *is a surjective algebra homomorphism.*

Lemma 3.1.2. Any subrepresentations of a sum of irreps is isomorphic to a sum of irreps.

- *Proof.* (1). Claim: Let $\phi : V \to W$ be representation homomorphism such that there exists $\psi : W \to V$ representation homomorphism and $\phi \circ \psi = \text{Id}_W$. Then $V \simeq \ker \phi \oplus \text{Im}\phi$. Proof of claim as exercise.
 - (2). Let *W* be subrepresentations of $V = \bigoplus m_i V_i$, and V_i are irreps, we show $W \simeq \text{sum of } V_i$ by induction on $\sum m_i$.

Base case $\sum m_i = 0$ trivial.

Induction step: Let $W \stackrel{\phi}{\hookrightarrow} \bigoplus m_i V_i$ inclusion map, let U be irreducible subrepresentation of W, then ϕ decomposes: there exists $\phi_{k,j} : W \to V_k, k \in [R], j \in [m_k]$ representation homomorphism such that

$$\phi(x) = (\phi_{k,j}(x))_{k \in [R], j \in [m_k]}.$$

We have $\phi_{k,j}|_U : U \to V_k$ is 0 as isomorphism since U, V_k irreducible. Also there exists k, j such that $\phi_{k,j}|_U$ is isomorphism. Thus $U \simeq V_k$ and there exists $\psi := (\phi_{k,i}|_U)^{-1}$ such that $\phi_{k,i} \circ \psi = \mathrm{Id}_{V_k}$. By previous choice $W \simeq \operatorname{Im}(\phi_{k,i}) \oplus \ker(\phi_{k,i})$ where the first component is V_k and the second component is isomorphic to $\bigoplus m'_i V_i$ where $m'_k = m_k - 1, m_i = m_i, \forall i \neq k$. By the induction hypothesis, $\ker(\phi_{k,i}) \simeq \text{sum of irreps and hence } W \simeq \text{sum}$ of irreps.

Hence the lemma.

Proof of Theorem 3.1.1. Let $n_k = \dim(V_k)$, let $(e_{k,1}, \cdots, e_{k,n_k})$, let

$$\psi: A \longrightarrow \bigoplus m_k V_k,$$
$$c \longmapsto (x \cdot e_{k,j})_{k \in [R], j \in [n_k]}.$$

Note that $x \cdot e_{k,j} = \rho_k(x)(e_{k,j}) = "j$ -th column of $\rho_k(x)$ ". Therefore Γ surjective $\iff \psi$ surjective. Now we want to show ψ is surjective.

Since $\operatorname{Im}\psi \subseteq \bigoplus n_k V_k$, $\operatorname{Im}\psi \simeq \bigoplus n_k V_k$ by lemma. To prove surjectivity, it suffices to show $m_k = n_k$ for all k (by dimension argument). Consider the map

$$\phi:\bigoplus m_k V_k \simeq \operatorname{Im}(\psi) \hookrightarrow \bigoplus n_k V_k,$$

where ϕ from the first term on the left to the last term with ϕ being representation homomorphism. Decomposition of homomorphism ϕ : there is $\phi_{l,i,k,j}: V_l \to V_k$ with

$$\phi((V)_{l,i})_{l \in [R], i \in [m_l]} = (\sum_{l,i} \phi_{l,i,k,j}(V_{l,i}))_{k \in [R], j \in [m_k]}.$$

By Schur Lemma, $\phi_{l,i,k,j} = \begin{cases} 0 & \text{if } l \neq k, \\ c_{ij}^{(k)} \operatorname{Id} V_k & \text{if } l = k, c_{ij}^{(k)} \in k. \end{cases}$ Note that $(e_{k,j})_{k \in [R], j \in [n_k]} = \psi(1_A) \in \operatorname{Im}(\phi)$. Therefore we have for all $k \in \mathbb{R}$

 $[R], \exists V_{k,1}, \cdots, V_{k,m_k} \in V_k$ such that

$$\left(c_{ij}^{(a)}\right)\begin{pmatrix}V_{k,1}\\V_{k,2}\\\vdots\\V_{k,m_k}\end{pmatrix} = \begin{pmatrix}e_{k,1}\\e_{k,2}\\\vdots\\e_{k,m_k}\end{pmatrix}$$

Hence $V_{k,1}, \dots, V_{k,m_k}$ generates the basis $e_{k,1}, \dots, e_{k,n_k}$. Therefore $m_k \ge n_k, \forall k$. **Definition 3.1.3.** Let $rad(A) = \{x \in A | \forall (V, \rho) \text{ irreps } \rho(x) = 0\}$ be the Jacobson radical of A.

Theorem 3.1.4 (Fundamental Isomorphism). Let *A* be finite dimensional algebra over algebraically closed field *k*. There are finitely many (non-isomorphic) irreps of *A*. They are $(V_1, \rho_1), \dots, (V_R, \rho_R)$ and

$$\Gamma : A/\mathrm{rad}(A) \longrightarrow \bigoplus \mathrm{End}(V_i),$$
$$x + \mathrm{rad}(A) \longmapsto (\rho_1(x), \cdots, \rho_R(x)),$$

is isomorphism of algebra.

Proof. We have

- By density theorem, if V₁, · · · , V_k non-isomorphism irreps of A, then A → ⊕ End(V_i) is surjective. Hence dim(A) ≥ ∑ dim(⊕ End(V_i)) ≥ k. Hence at most dim(A) irreps.
- By density theorem, the map

$$\Lambda: A \longrightarrow \bigoplus \operatorname{End}(V_i),$$
$$x \longmapsto (\rho_1(x), \cdots, \rho_R(x))$$

is surjective. Hence by basis isomorphism, $A/\ker(\Lambda) \simeq \bigoplus \operatorname{End}(V_i)$.

• We have ker $\Gamma = \{a \in A | \rho_1(a) = 0, \cdots, \rho_R(a)\} = \operatorname{rad}(A)$.

Hence the theorem.

Theorem 3.1.5. Let A be finite dimensional algebra, then

$$\operatorname{rad}(A) \stackrel{(1)}{=} \{x \in A | \exists n > 0, (x)^n = \{0\}\} \stackrel{(2)}{=} \bigcap_{\substack{M \text{ maximized left-ideal of } A}} M,$$

where (x) is two-sided ideal generated by x. Then $I \times J = \{\sum_{i=1}^{k} xy, x_i \in I, y_i \in J\}$ product of ideal which implies $I^n = \{\sum_{i=1}^{k} x_{i1}, \cdots, x_{im} | x_{i,k} \in I\}$.

Lemma 3.1.6. For any finite dimensional representations A, there is filtration $0 = V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n = V$ subrepresentations such that V_i/V_{i-1} is irreducible.

Proof. Induction on $\dim(V)$.

Let V_1 be an irreducible subrepresentation, by induction hypothesis V/V_1 has a filtration, then

$$U_0 \subset U_1 \subset \cdots \subset U_k = V/V_1 \cdots V_i/V_{i-1}$$
 irreducible.

By basic isomorphism,

{subrepresentation of V/V_1 } $\stackrel{\text{bijection}}{\longleftrightarrow}$ {subrepresentations of V containing V_1 },

 $W/W_1 \leftarrow W$.

Hence there exists $W_0 \subseteq W_1 \subseteq \cdots \subseteq W_k \subseteq V$ such that $U_i = \frac{W_i}{V_1}$ and $W_i/W_{i-1} \simeq (W_i/V_1)/(W_{i-1}/V_1) = U_i/U_{i-1}$ irreducible. Thus $0 \subseteq W_0 = V_1 \subseteq W_1 \subseteq \cdots \subseteq W_k = V$ is a filtration for V.

Proof of Theorem **3.1.5***.* For part (1):

Suppose $x \notin \operatorname{rad}(A)$, then there is (V, ρ) irreps such that $\rho(x) \neq 0$. Since $(x) \cdot V$ is a nondegenrate subrepresentations, we get $(x) \cdot V = V$. Hence for all $m, (x)^m V = V$ implies that for all $m, (x)^m \neq 0$.

Let $0 = V_0 \subseteq V_1 \subseteq \cdots \subseteq V_m = V_{\text{reg}}$ subrepresentation such that V_i/V_{i-1} irreducible. For all $x \in \text{rad}(A)$, for all i, we have $xV_i/V_{i-1} = 0$ hence $xV_i \subseteq V_{i-1}$. Therefore for all $x \in (\text{rad}(A))^m, xV_m \subseteq V_0 = 0$. Hence $(\text{rad}(A))^m = 0$ and $\forall x \in \text{rad}(A), (x)^m \subseteq (\text{rad}(A))^m = 0$ therefore $x \cdot 1_A = 0$ thus x = 0.

For part (2):

Remark: We have *I* is left ideal of *A* if and only if *I* is subrepresentation of $V_{\text{reg}} = A$. Also *M* is maximal left ideal of *A* if and only if V_{reg}/M are irreducible representations.

(\subseteq :) Let $x \in \operatorname{rad}(A)$. By (1), there is $m, (x)^m = 0$ hence for all $a \in A, (ax)^m = 0$. Therefore $\forall a \in A, 1 - ax$ is invertible become $(1 - ax)(1 + ax + (ax)^2 + \cdots + (ax)^{m-1}) = 1 - (ax)^m = 1$. Hence $x \in \bigcap_{\substack{M \text{ max left ideal} \\ M \text{ max left ideal}}} M$. Indeed if $x \notin M$ on maximal left ideal theorem Ax = A such that

left ideal, then Ax + M = A where Ax is left ideal. Hence $\exists m \in M, a \in A$ such that $ax + m = 1_A$. Therefore m = 1 - ax invertible by above and contradicts $M \neq A$.

 $(\supseteq:) \text{ Homework: } x \in \bigcap M \Longrightarrow x \in \bigcap_{i,v \in V_i} \operatorname{Ann}_{\rho_i}(v) = \operatorname{rad}(A).$

3.2 Semisimplicity

Definition 3.2.1. An *A*-representation is **semisimple** if it is isomorphic to a sum of irreducible.

Example 3.2.2. If A = K[G] is a group algebra over k of $char(k) \nmid |G|$. Then any A-representation is semisimple by Matschke lemma.

Theorem 3.2.3. Let k be algebraically closed field, and let A be a finite dimensional K-algebra, the following are equivalent:

- (1). Any finite dimensional A-representation is semisimple (= decomposible into irreps);
- (2). The regular representation is semisimple;
- (3). The radical rad(A) = 0;

(4). There is finite dimensional vector spaces V_1, \dots, V_R such that $A \simeq \bigoplus_{i=1}^R \operatorname{End}(V_i)$ as algebra.

We call A semisimple in this case. In this case, V_1, \dots, V_R can be given the structure of *A*-representations as follows: if

 $\Gamma: A \longrightarrow \bigoplus \operatorname{End}(V_i),$ $a \longmapsto (\rho_1(a), \cdots, \rho_R(a)),$

is isomorphism of algebra, then (V_i, ρ_i) is A-representation for all i. Moreover

(a). The spaces V_1, \dots, V_R be all the irreps of A up to isomorphism.

(b). The regular $V_{\text{reg}} \simeq \bigoplus_{i=1}^{R} \dim(V_i) V_i$ as A-representations.

Proof. $(1) \Longrightarrow (2)$ is trivial.

(2) \Longrightarrow (3): suppose $V_{\text{reg}} \simeq \bigoplus m_i V_i$ are irreps, there is $1_a \in V_{\text{reg}}$ implies that there is $v = (v_{i,j})_{i \in [n], j \in [m_i]} \in \bigoplus m_i V_i$ such that for all $a \in A \setminus \{0\}, a \cdot v \neq 0$ since $a \cdot 1_A \neq 0$. Let $a \in A \setminus \{0\}$ and let $a \cdot v = (a \cdot V_{ij})$, there is $i, j, a \cdot V_{ij} \neq 0 \Longrightarrow \rho_i(a)(V_{ij}) \neq 0 \Longrightarrow \rho_i(a) \neq a \Longrightarrow a \notin \text{rad}(A)$.

 $(3) \Longrightarrow (4)$: Proved as corollary of the density theorem.

It remains to show $(4) \Longrightarrow (1), (a), (b)$.

(4) \Longrightarrow (b): Sketch: The representation $V_{\text{reg}} \stackrel{\Gamma}{\simeq} \bigoplus \text{End}(V_i) \simeq \bigoplus \dim(V_i)V_i$. We give $\text{End}(V_i)$ the structure of A-representations as follows. For any $a \in A$, for all $f \in \text{End}(V_i)$, we have $a \cdot f = \rho_i(a) \circ f$. The map Γ is a homomorphism of A representation since

$$a \cdot \Gamma(x) = a(\rho_1(x), \cdots, \rho_R(x)) = (a\rho_1(x), \cdots, a\rho_R(x))$$
$$= (\rho_1(a) \circ \rho_1(x), \cdots, \rho_R(a) \circ \rho_R(x)).$$

Therefore

$$\Gamma(a \cdot x) = (\rho_1(ax), \cdots, \rho_R(ax)) = (\rho_1(a) \circ \rho_1(x), \cdots, \rho_1(a) \circ \rho_R(x))$$

Hence $V_{\text{reg}} \stackrel{\Gamma}{\simeq} \bigoplus \text{End}(V_i)$. Hence $\text{End}(V_1) \simeq \dim(V_i)V_i$. Indeed, if $\{e_1, \dots, e_d\}$ is a basis of V_i , then an isomorphism is given by

$$\rho : \operatorname{End}(V_1) \longrightarrow \dim(V_i)V_i,$$
$$f \longmapsto (f(e_1), \cdots, f(e_d)).$$

(check this!) Lastly V_i is irreducible since for all $v \in V_i \setminus \{0\}$ we have $A \cdot v = \text{End}(V_i) \cdot V = V_i$.

(4) \implies (1) + (*a*): It actually suffices to show that any finite dimensional A-representation is isomorphic to subrepresentation of mV_{reg} for some m (since subrepresentations of sum of irreps is isomorphic to sum of irreps).

We give the dual vector space A^* the structure of A-representations: for all $a \in A$, for all $f \in A^*$, we have

$$a \cdot f = \begin{cases} A \to K \\ x \to f(xa) \end{cases}$$

[Check *A*^{*} is an *A*-representation].

We have the following claim:

Claim 1: Any *A*-representations (V, ρ) of dim *d* is isomorphic to a subrepresentation of aA^* .

Claim 2: We have $(4) \Longrightarrow A \simeq A^*$ as representations where the left hand side is V_{reg} .

Proof of Claim 1: For $f \in V^*$ and $v \in V$ we define

$$f^{v}: A \longrightarrow k,$$
$$x \longmapsto f(x \cdot v).$$

Clearly $f^v \in A^*$, moreover $f^{av} = af^v$ ($f^{av}(x) = f(xav) = (af^v)(x)$). Hence

$$V \longrightarrow A^*,$$
$$v \longmapsto f^v.$$

is a homomorphism of A representations. Let f_1, \dots, f_d be a basis of V^* , by above

$$\phi \cdot v \longrightarrow dA^*,$$
$$v \longmapsto (f_1^v, \cdots, f_d^v),$$

is A-representations homomorphism. Moreover ϕ is injective since $\phi(v) = 0 \Longrightarrow \forall i, f_1^v(1_A) = 0 \Longrightarrow \forall i, f_i(v) = 0 \Longrightarrow v = 0$. Hence $V \simeq \text{Im}(\phi) \subseteq dA^*$.

Proof of Claim 2: Let $A = \bigoplus \operatorname{End}(V_i)$, let

$$\phi: A \longrightarrow A^*,$$

$$(\rho_1, \cdots, \rho_R) = a \longmapsto \left(\begin{array}{c} A \to K \\ (f_1, \cdots, f_R) \mapsto \sum_{i=1}^R T_R(f_i \circ \rho_i) \end{array} \right).$$

This is isomorphism of A-representations. Thus we see homomorphism (check), $\dim(A) = \dim(A^*)$ checked, how about injectivity?

We see ϕ is injective because $\phi(\rho_1, \dots, \rho_R) = 0$ implies that all the coefficients in the matrices of ρ_1, \dots, ρ_R are 0. Hence $\rho_1, \dots, \rho_R = 0$.

Theorem 3.2.4 (Wedderburn's Theorem). We have

- Radical rad(A) = 0 implies that $A \simeq \bigoplus Mat_{M_i}(k)$ if k is algebraically closed.
- Radical rad(A) = 0 implies that $A \simeq \bigoplus \operatorname{Mat}_{M_i}(D_i)$ division algebra over k in general.

Part II Commutative Algebra

We are studying the correspondence

Geometry \longleftrightarrow Algebra,

 $p(a) = 0 \longleftrightarrow p \in \mathbb{C}[x_1, \cdots, x_n], a \in \mathbb{C}^n,$

a belong to locus of 0 of $p \leftrightarrow p$ belong to the ideal $\ker(p_{V^{\mathbb{C}}})$.

Throughout we assume all rings are commutative unless otherwise stated.

Preliminaries on Ideals

4.1 **Basic Operations**

Definition 4.1.1. Let *R* be a commutative ring, $I \subseteq R$ is **ideal** if it is closed under +, - and $RI \subseteq I$.

Remark 4.1.2. If *I*, *J* are ideals, then $I \cap J$ is an ideal.

Definition 4.1.3. For $S \subseteq R$, we say $(S) = \bigcap_{S \subseteq I \text{ ideal}} I$ is the **ideal generated by** S.

Remark 4.1.4. Ideal $I \neq R$ if and only if *I* does not contain a unit (invertible element).

Definition 4.1.5. Let I, J ideals, then we define the **sum of ideals** $I+J = \{x+y | x \in I, y \in J\} = (I \cup J)$.

We define the product of ideals $IJ = (\{xy|x \in I, y \in J\}) = \{\sum_{i=1}^{n} x_i y_i | m \ge 0, x_i \in I, y_i \in I\}.$

We define the **ideal quotient** $(I : J) = \{r \in R | rJ \subseteq I\}.$

Definition 4.1.6. We say ideal *I* is **prime** if $R \setminus I$ is closed under multiplication $(\forall x_1, \dots, x_n \notin I \Longrightarrow x_1 \dots x_n \notin I)$.

Remark 4.1.7. Let $x \notin I$ prime ideal, for all *m* we have $x^m \notin I$.

Definition 4.1.8. Let $I \subseteq R$ be ideal, the **radical** of I is $r(I) = \{x \in R | \exists m > 0, x^m \in I\}$. The **nilradical** of R is $r(0) = \{x \in R | \exists m > 0, x^m = 0\}$.

Example 4.1.9. Take $R = \mathbb{Z}$, I = (m), then we have $r(I) = (p_1 \cdots p_k)$ where $p_1 \cdots p_k$ be distinct primes of $m = \bigcap_{i=1}^k (p_i)$.

Proposition 4.1.10. For all $I \subseteq R$ ideal, we have $r(I) = \bigcap_{I \subseteq P \text{ prime}} P$ (in particular, r(I) is an ideal).

Proof. (\subseteq) : Consider $x \in r(I)$ we have $\exists m > 0, x^m \in I \implies \forall I \subseteq P$ prime, $x^m \in P \implies \forall I \subseteq P$ prime, $x \in P \implies x \in \bigcap_{I \subseteq P \text{ prime}} P$.

 (\supseteq) : Let $x \notin r(I)$, let $\Omega = \{J \subseteq R | I \subseteq J, J \cap \{x, x^2, x^3, \dots\} = \emptyset\}$. Note $I \in \Omega$ hence $\Omega \neq \emptyset$. Let *P* be a maximal element of Ω for inclusion (such a maximal element exists by Zorn's Lemma). We claim that *P* is prime.

Let $a, b \notin P \Longrightarrow P + (a), P + (b) \notin \Omega \Longrightarrow \exists m, n > 0$ such that $x^m \in P + (a), x^n \in P + (b) \Longrightarrow x^{m+n} \in (P + (a))(P + (b)) = P + (ab) \Longrightarrow P + (ab) \notin \Omega \Longrightarrow ab \notin P$. Therefore $x \in P \Longrightarrow x \in \bigcap_{I \subseteq Q \text{ prime}} Q$.

Lemma 4.1.11. We have

- $I \subseteq r(I)$,
- r(r(I)) = r(I),
- $r(I) = R \iff I = R$,
- $r(IJ) = r(I \cap J) = r(I) \cap r(J)$,
- $I \text{ prime} \Longrightarrow r(I) = I \Longrightarrow \forall m > 0, r(I^m) = I.$

Proof. Easy check.

4.2 Extension and Contraction of Ideals

Definition 4.2.1. Let $f : R \to T$ be a ring homomorphism, then we define

- For *I* ideal of *R*, the f-extension of *I* is $I^e = (f(I))$ the ideal generated by $f(x), x \in I$.
- For *J* ideal of *T*, the *f*-contraction of *J* is $J^c = f^{-1}(J) = \{x \in I | f(x) \in J\}$.

Remark 4.2.2. We have J^c is an ideal since $f(x), f(y) \in J \implies f(x+y) \in J, f(rx) \in J$. This gives

$$\{\text{ideals of } R\} \stackrel{e}{\rightleftharpoons} \{\text{ideals of } T\}.$$

Remark 4.2.3. We have $J \subset T$ prime $\Longrightarrow J^c$ prime. Note that $I \subseteq R$ prime does not imply I^e is prime $(f(x), f(y) \notin J \Longrightarrow f(xy) = f(x)f(y) \in J)$.

Example 4.2.4 (Example of I prime, I^e not prime.). Let

$$f: \mathbb{Z} \longrightarrow \mathbb{Z}[i],$$
$$n \longmapsto n,$$

and let $I = 5\mathbb{Z}$. We see *I* prime but $I^e = 5\mathbb{Z}[i]$ not prime since (2 + i)(2 - i) = 5 since the left hand side terms are not in I^e and the right hand side term is in I^e .

Definition 4.2.5. Given $f : R \to T$, and ideal *I* of *R* is called **contracted** if there is *J*, such that $I = J^c$. Similarly, an ideal *J* of *T* is called **extended** if there is *I* such that $J = I^c$.

Lemma 4.2.6. We have

$$\forall I \subseteq R, I^{ec} \supseteq I, \\ \forall J \subseteq T, J^{ce} \subseteq J.$$

Further we have

$$\forall I \subseteq R, I^{ece} = I^e,$$

$$\forall J \subseteq T, J^{cec} = J^c.$$

Proof. First two statements are routine check. For the last two, we see $I^{ece} = (I^e)^{ce} \subseteq I^e$. Also we have $I^{ece} = (I^{ec})^e \supseteq I^e$. Same for J.

Corollary 4.2.7. We have that for all $I \subseteq R$ contracted $I^{ec} = I$. For all $J \subseteq R$ extended $J^{ce} = J$. Hence

$$\{I \subseteq R \text{ contracted}\} \stackrel{e}{\underset{c}{\leftarrow}} \{J \subseteq T \text{ extended}\}$$

are bijections.

Lemma 4.2.8. Let $f : R \to T$ ring homomorphism, let I_1, I_2 ideals of R and J_1, J_2 ideals of T, we have

- (1). $(I_1 + I_2)^e = I_1^e + I_2^e$,
- (2). $(I_1I_2)^e = I_1^e I_2^e$,
- (3). $(I_1 \cap I_2)^e \subseteq I_1^e \cap I_2^e$,
- (4). $r(I)^e \subseteq r(I^e)$,
- (5). $(I_1:I_2)^e \subseteq (I_1^e:I_2^e).$

On the other hand,

(1). $(J_1 + J_2)^c \supseteq J_1^c + J_2^c$, (2). $(J_1J_2)^c \supseteq J_1^c J_2^c$, (3). $(J_1 \cap J_2)^c = J_1^c \cap J_2^c$, (4). $r(J)^c = r(J^c)$, (5). $(J_1 : J_2)^c = (J_1^e : J_2^e)$. *Proof.* Routine check.

Proposition 4.2.9. Let $f : R \to T$ be ring homomorphism. Then $I \subseteq R$ is prime and contracted $\stackrel{(1)}{\longleftrightarrow} I$ contraction of a prime ideal. Also $J \subseteq T$ prime and extended $\stackrel{(2)}{\Longrightarrow} J$ extension of a prime ideal.

Proof. $(\stackrel{(1)}{\longleftarrow}): I = J^c$ with J prime implies that I prime as seen above.

 $(\stackrel{(2)}{\Longrightarrow}): J$ extended $\implies (J^c)^e = J$. Then J prime implies that J^c prime hence J is extension of prime.

 $(\stackrel{(1)}{\Longrightarrow})$: To be completed.

Corollary 4.2.10. If $f : R \to T$ homomorphism such that every ideal of T is extended. Then

contracted ideals of
$$R$$
 $\stackrel{e}{\rightleftharpoons}_{c}$ {ideals of T }

are bijective and

{prime ideals of
$$R$$
} $\stackrel{e}{\underset{c}{\leftarrow}}$ {prime ideals of T }.

Example 4.2.11 (Example of quotient map). Let $K \subseteq R$ be an ideal of R and let

$$f: R \longrightarrow R/K,$$
$$x \longmapsto x + K$$

be the quotient map. Then we have

- (1). For all $I \subseteq R, I^e = (\{x + K, x \in I\}) = (I + K)/K$.
- (2). Every ideal of R/K is extended. Ideal J of R/K is $I^e = I/K$ for $I = \bigcup_{x+K \in J} x + K$.
- (3). The contracted ideals of *R* are the ideals of *R* containing *K*. For $K \subseteq I \subseteq R$, we have $I^e = I/K$.

Hence $I \xrightarrow{e} I/K$ gives a bijection, we see

$$\{\text{ideals } I, K \subseteq I \subseteq R\} \xrightarrow{\text{bijection}} \{\text{ideals of } R/K\},\$$

{prime ideals $I, K \subseteq I \subseteq R$ } $\xrightarrow{\text{bijection}}$ {prime ideals of R/K}.

Rings of Fractions

5.1 Definitions and Universal Properties

Let *R* be a commutative ring.

Definition 5.1.1. We call $S \subseteq R$ a **multiplicative set** if $1 \in S, 0 \notin S$, and S is closed under multiplication.

Definition 5.1.2. Let $S \subseteq R$ be a multiplicative set. The **ring of fraction** is

$$S^{-1}R = \left\{\frac{x}{s} | x \in R, s \in S\right\} / \sim,$$

where $\frac{x}{s} \sim \frac{y}{t}$ if $\exists u \in S$ such that uxt = usy. We can see $\frac{x}{s} + \frac{y}{t} = \frac{xt+ys}{st}$ and $\frac{x}{s} \times \frac{y}{t} = \frac{xy}{st}$ well defined (with respected to equivalence relation).

Proposition 5.1.3. The data $(S^{-1}R, +, \times, \frac{0}{1}, \frac{1}{1})$ is a ring. The map

$$\epsilon: R \longrightarrow S^{-1}R,$$
$$x \longmapsto \frac{x}{1},$$

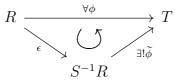
is a ring homomorphism, which we call the "fraction map".

Notation: The set of **units** (invertible elements for multiplication) in a ring R is denoted by U(R).

Remark 5.1.4. The image of map $\epsilon(S) = \{\frac{s}{1}, s \in S\} \subseteq U(S^{-1}R)$.

Proposition 5.1.5 (Universal Property). Let $S \subseteq R$ as a multiplicative set. Then

1. If $\phi : R \to T$ is a ring homomorphism such that $\phi(S) = U(T)$, then there exists a unique $\tilde{\phi} : S^{-1}R \to T$ ring homomorphism such that $\phi = \tilde{\phi} \circ \epsilon$ such that the diagram



commutes.

2. The ring $S^{-1}R$ is uniquely determined by this property.

5.2 Ideal Correspondence for the Fraction Map

Notation: Let $S \subseteq R$ be a multiplicative set. Let $I \subseteq R$, we denote $S^{-1}I = \{\frac{x}{s} | x \in I, s \in S\}$.

Lemma 5.2.1. Let $S \subseteq R$ be a multiplicative set, let

$$\epsilon: R \longrightarrow S^{-1}R,$$
$$x \longmapsto \frac{x}{1}.$$

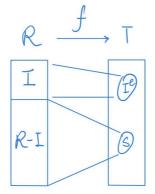
The extension and contraction of ideals through ϵ satisfy

- (1). For all $I \subseteq R, I^e = S^{-1}I$
- (2). Every ideal J of $S^{-1}R$ is ϵ -extended. The ideal $J = S^{-1}I$ for some ideal I of R.
- (3). We have $S^{-1}I \neq S^{-1}R$ if and only if $I \cap S = \emptyset$.
- *Proof.* (1). By definition, we have $I^e = (\{\frac{x}{1}, x \in I\}) = \{\sum_{k=1}^n \frac{x_k}{s_k} | x_k \in I, s_k \in S\},$ then by putting to same denominators we have $\{\frac{x}{s} | x \in I, s \in S\} = S^{-1}I.$
 - (2). Let *J* be ideal of $S^{-1}R$, let $I = \{x \in R | \frac{x}{1} \in J\}$. Easy to check *I* is ideal of *R* and $J = S^{-1}I$.
 - (3). We have

$$S^{-1}I = S^{-1}R \iff \exists x \in I, \exists s \in S, \frac{x}{s} = \frac{1}{1}$$
$$\iff \exists x \in I, \exists u, s \in S, ux = us$$
$$\iff \exists y \in I, \exists t \in S, y = t \iff I \cap S \neq \emptyset$$

Hence the lemma.

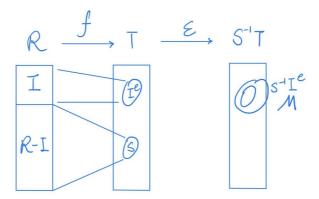
Proof of the one direction of Proposition 4.2.9 (1). Let $f : R \to T$ be a ring homomorphism and let $I \subseteq R$ be prime contracted ideal. Let $S = f(R \setminus I) = \{f(x) | x \in R \setminus I\}$. Then I contracted implies that $I^{ec} = I$ from previous results. Then $I^e \cap S = \emptyset$ (see picture).



Then *I* prime implies that *S* is a multiplicative set (indeed $x, y \in R \setminus I$ implies that $f(x)f(y) = f(xy) \in S$ and $1 = f(1) \in S$ and $0 \notin S$ since $I^e \cap S = \emptyset$. Let

$$\epsilon: T \longrightarrow S^{-1}T,$$
$$x \longmapsto \frac{x}{1},$$

be the fraction map. The corresponding picture we will need is below.



Then $I^e \cap S = \emptyset$ with the previous result implies that $S^{-1}I^e \neq S^{-1}T$. This implies that there exists a maximal ideal M of $S^{-1}T$ containing $S^{-1}I^e$. Since any ideal of $S^{-1}T$ is ϵ -extended, we have $M = S^{-1}P$ where P is the ϵ -contraction of M. Then M prime implies P prime. Further $S^{-1}P \notin S^{-1}T$ implies that $P \cap S = \emptyset$. Thus $I^e \subseteq P \subseteq T \setminus S$. Hence $P^c = I$ which shows I is contraction of a prime ideal. \Box

Proposition 5.2.2. Let $S \subseteq R$ be multiplicative set and let

$$\epsilon: R \longrightarrow S^{-1}R,$$

$$x \longmapsto \frac{x}{1},$$

then

- (1). Every ideal of $S^{-1}R$ is extended and $I^e = S^{-1}I$.
- (2). The contracted ideals are $I \subseteq R$ such that $x \notin I, s \in S \Longrightarrow sx \notin I$.
- (3). The contracted prime ideals are $I \subseteq R$ prime such that $I \cap S = \emptyset$. Hence $I \stackrel{e}{\longmapsto} S^{-1}I$ gives bijection

$$\{I \subseteq R \text{ ideal } s.t. \forall x \notin I, \forall s \in S, sx \notin I\} \xleftarrow{bij} \{\text{ideal of } S^{-1}R\},\$$

$$\{I \subseteq R \text{ prime ideal}, I \cap S = \emptyset\} \xleftarrow{bij} \{\text{prime ideal of } S^{-1}R\}$$

Proof. (1). Already proved.

(2). Ideal *I* contracted if and only if $I^{ec} = I$. Let $x \in R$, then

$$\begin{aligned} x \in I^{ec} & \Longleftrightarrow x \in (S^{-1}I)^c \Longleftrightarrow \frac{x}{1} \in S^{-1}I \\ & \Longleftrightarrow \exists y \in I, s \in S, \frac{x}{1} = \frac{y}{s} \Longleftrightarrow \exists y \in I, u, s \in S, usx = uy \\ & \Longleftrightarrow \exists t \in S, tx \in I. \end{aligned}$$

Hence $I^{ec} = \{x \in R | \exists t \in S, tx \in I\}$. We have *I* contracted if and only if $I^{ec} = I$ if and only if $\forall x \notin I, \forall t \in S, tx \notin I$.

(3). Let $I \subseteq R$ prime, then $I \cap S = \emptyset$ implies $\forall x \notin I, \forall s \in S, sx \notin I$ implies that I is contracted. Also $I \cap S \notin \emptyset$ implies that $I^e = S^{-1}R$ implies that $I^{ec} \notin I$ implies that I not contracted. Hence I prime is contracted if and only if $I \cap S = \emptyset$.

Hence the proposition is proved.

We have the bijection

$${I \subseteq R \setminus S \text{ prime ideal}} \xrightarrow{I \mapsto S^{-1}I} {\text{prime ideal of } S^{-1}R}.$$

Notation: Let $P \subseteq R$ be prime ideal, $S = R \setminus P$ is a multiplicative set and we denote $R_P = S^{-1}R$. For $I \subseteq R$, we denote $I_P = S^{-1}I$.

Remark 5.2.3. For $P \subseteq R$ prime ideal, one has the following ideal correspondences

{*I* prime ideal of $R, I \subseteq P$ } \longleftrightarrow {prime ideal of R_P },

{*I* prime ideal of $R, I \supseteq P$ } \longleftrightarrow {prime ideal of R/P}.

Remark 5.2.4. For $P \subseteq R$ prime ideal, by above bijections we see that P_P is the unique maximal ideal of R_P . Hence R_P is a **local ring** and R_P/P_P is a field (residue field of R_P at P_P). The fraction map

$$R \longrightarrow R_P,$$
$$x \longmapsto \frac{x}{s},$$

is called **localization at** *P*.

Example 5.2.5. Let $R = \mathbb{C}[X_1, \dots, X_n], P \subseteq R$ be prime ideal. Then the local ring $R_P = \{\frac{f}{g} | f, g \text{ polynomial}, g \notin P\} \subseteq \mathbb{C}(X_1, \dots, X_n).$

Let $Z(P) = \{(x_1, \dots, x_n) \in \mathbb{C}^n | \forall f \in P, f(x_1, \dots, x_n) = 0\}$, this is the "algebraic variety defined by P''. Then R_P is the ring of rational functions which are defined "almost everywhere" on Z(P). We see P_P is rational functions which are 0 on Z(P). The quotient R_P/P_P "identify rational functions if they have same value on Z(P).

Localizations of Modules

6.1 Definitions and Construction as "Extension of Scalars"

Definition 6.1.1 (Module of Fraction). Let *R* be a ring and $S \subseteq R$ be multiplicative set. For a *R*-module *M*, we define the $S^{-1}R$ -module $S^{-1}M$ as follows

• The module $S^{-1}M = \{\frac{x}{s} | x \in M, s \in S\} / \sim$, where $\frac{x}{s} \sim \frac{y}{t}$ if $\exists u \in S, utx = usy$.

• The sum
$$\frac{x}{s} + \frac{y}{t} = \frac{tx+sy}{st}$$

• The product $\frac{r}{s} \cdot \frac{x}{t} = \frac{rx}{st}$ where $\frac{r}{s} \in S^{-1}R$ and $\frac{x}{t} \in S^{-1}M$.

Claim: The operations are well defined (with respect to equivalence relation) and give $S^{-1}M$ the structure of $S^{-1}R$ -module (if $\frac{x}{s} \sim \frac{y}{t}$ then $\frac{x}{s} \sim \frac{utx}{uts} = \frac{usy}{uts} \sim \frac{y}{t}$).

Proof. Exercise.

Remark 6.1.2. Note that the module $S^{-1}M$ is actually a $(R, S^{-1}R)$ -bimodule (with R-action, $r\frac{x}{s} := \frac{rx}{s}$). This is a restriction of scalar construction corresponding to the homomorphism $\epsilon : R \to S^{-1}R$.

Proposition 6.1.3. We have $S^{-1}M \simeq S^{-1}R \otimes_R M$ as $S^{-1}R$ -module.

Remark 6.1.4. This shows that $S^{-1}M$ is an "extension of scalar" construction corresponding to $\epsilon : R \to S^{-1}R$.

Reminder: Let R, T be commutative rings, then

(1). The data *M* is a (R, T)-**bimodule** if it is *R*-module and *T*-module and for all $r \in R$, for all $t \in T$, for all $x \in M$, we have r(tx) = t(rx).

- (2). If $f : R \to T$ is a ring homomorphism, then any T-module M is automatically a (R,T)-bimodule when defining the action of R by $\forall r \in R, \forall x \in M, rx = f(r)x$ where the left hand side is r action and the right hand side is t action. This is the **restriction of scalars**. Example: The map $f = \epsilon$ fraction operation.
- (3). If *M* is *R*-module and *N* is (R, T)-bimodule, then the tensor $M \otimes_R N$ is a (R, T)-bimodule when defining the action of *T* by: $\forall t \in T, \forall x \in M, \forall y \in N$, we have $t(x \otimes y) = x \otimes (ty)$.
- (4). If $f : R \to T$ is a ring homomorphism, then *T* is a (R,T)-bimodule by restriction of scalar. Hence for any *R*-module *M*, we have $T \otimes_R M$ is a (R,T)-bimodule. This is **extension of scalars**.

Example 6.1.5. The module $S^{-1}R \otimes_R M$ is a $(R, S^{-1}R)$ -bimodule (using $f = \epsilon$ the fraction map).

Proposition 6.1.6. For all R-module M, then $S^{-1}M \simeq S^{-1}R \otimes_R M$ as $S^{-1}R$ -module with isomorphism such that $\frac{x}{s} \mapsto \frac{1}{s} \otimes x$.

Remark 6.1.7. If $A \simeq B$ as $S^{-1}R$ -module then $A \simeq B$ as $(R, S^{-1}R)$ -module (by restriction of scalars).

Proof. We prove by

• Consider the map

$$g: S^{-1}M \longrightarrow S^{-1}R \otimes M,$$
$$\frac{x}{s} \longmapsto \frac{1}{s} \otimes x,$$

is well defined (respects equivalence relation since $\forall u \in S, g(\frac{ux}{us}) = \frac{1}{us} \otimes ux = \frac{1}{s} \otimes x = g(\frac{x}{s})$) and is $S^{-1}R$ -bimodule.

• The map

$$\begin{split} f:S^{-1}R\times M &\longrightarrow S^{-1}M,\\ (\frac{r}{s},x) &\longmapsto \frac{rx}{s}, \end{split}$$

is *R*-linear. Hence there exists $f^*: S^{-1}R \otimes M \to S^{-1}M$ such that $\frac{r}{s} \otimes x \mapsto \frac{rx}{s}$.

• Easy to check that $f^*g = \text{Id}$ and $gf^* = \text{Id}$.

Hence f^*, g are isomorphisms of $S^{-1}R$ -module.

Corollary 6.1.8. Let M, N be R-modules, then

- (1). We have $S^{-1}M \oplus S^{-1}N \simeq S^{-1}(M \oplus N)$ as $S^{-1}R$ -module with isomorphism such that $(\frac{x}{s}, \frac{y}{t}) \mapsto \frac{(tx,sy)}{st}$.
- (2). We have $S^{-1}M \otimes S^{-1}N \simeq S^{-1}(M \otimes N)$ as $S^{-1}R$ -module with isomorphism such that $\frac{x}{s} \otimes \frac{y}{t} \mapsto \frac{x \otimes y}{st}$.

Proof. We have the isomorphisms

$$S^{-1}M \oplus S^{-1}N \simeq (S^{-1}R \otimes M) \oplus (S^{-1}R \otimes N) \simeq S^{-1}R \otimes (M \oplus N) \simeq S^{-1}(M \oplus N)$$

given by the maps

$$\left(\frac{x}{s}, \frac{y}{t}\right) \mapsto \left(\frac{1}{s} \otimes x, \frac{1}{t} \otimes y\right) = \left(\frac{1}{st} \otimes tx, \frac{1}{st} \otimes sy\right) \mapsto \frac{1}{st} \otimes (tx, sy) \mapsto \frac{(tx, sy)}{st}$$

Similarly consider the isomorphism

$$S^{-1}M \otimes_{S^{-1}R} S^{-1}N \simeq S^{-1}M \otimes_{S^{-1}R} S^{-1}R \otimes_R N$$

$$\simeq (S^{-1}M \otimes_{S^{-1}R} S^{-1}R) \otimes_R N \simeq S^{-1}M \otimes_R (M \otimes_R N) = S^{-1}R(M \otimes N),$$

where the isomorphisms are given similarly (...).

Lemma 6.1.9. If A is R-module, B is (R, T)-bimodule and C is T-module then

$$(A \otimes_R B) \otimes_T C \simeq A \otimes_R (B \otimes_T C)$$

with isomorphism such that

$$(x \otimes y) \otimes z \longmapsto x \otimes (y \otimes z).$$

6.2 Flatness for Modules of Fractions

Reminder:

(1). A sequence of R-module homomorphism

$$\cdots \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} \cdots$$

is **exact** if $Im(f_i) = ker(f_{i+1})$. A short exact sequence is an exact sequence of the form

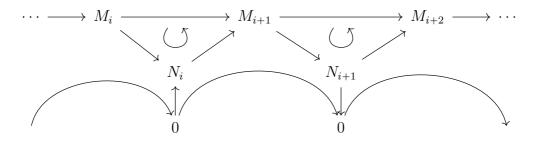
 $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0.$

(2). A functor $\mathfrak{F} : \mathfrak{R} - \mathcal{M}od \to \mathfrak{R} - \mathcal{M}od$ is called **exact** if for all sequence exact, we have $\mathfrak{F}(seq)$ is exact.

Remark 6.2.1. If \mathfrak{F} is exact, then

- (1). If f is injective then $\mathfrak{F}(f)$ is injective (Using $0 \to A \xrightarrow{f} B$ exact).
- (2). If f surjective then $\mathfrak{F}(f)$ surjective $(A \xrightarrow{f} B \longrightarrow 0)$.
- (3). We have $\mathfrak{F}(M/N) \simeq \mathfrak{F}(M)/\mathfrak{F}(N)$. Using $0 \to N \to M \to M/N \to 0$ exact hence $0 \to \mathfrak{F}(N) \to \mathfrak{F}(M) \to \mathfrak{F}(M/N) \to 0$ exact hence $\mathfrak{F}(M/N) \simeq \mathfrak{F}(M)/\mathfrak{F}(N)$ by first isomorphism theorem.

Lemma 6.2.2. The functor \mathfrak{F} is exact if and only if for all sequence short exact, $\mathfrak{F}(seq)$ is short exact. That is, there exists N_i such that the diagram



commutes.

Reminder (3). Let M be a R-module, we define $\mathfrak{F}_M : \mathcal{R} - \mathcal{M}od \to \mathcal{R} - \mathcal{M}od$ by $\mathfrak{F}_M(A) = M \otimes A$ and $\mathfrak{F}_M(g) = \mathrm{Id}_M \otimes g$. Module M is called **flat** if \mathfrak{F}_M is exact.

Example 6.2.3. We have *R* is a flat *R*-module (deduced from the isomorphism $R \otimes A \simeq A$).

Lemma 6.2.4. Let seq be $A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ of R-module. Then for all R-module M, seq is exact implies that $\mathfrak{F}_M(seq)$ is exact.

Proof. Suppose *seq* is exact, then β is surjective and $\text{Im}(\alpha) = \text{ker}(\beta)$. Want to show $\text{Id}_M \otimes \beta$ surjective and $\text{Im}(\text{Id} \otimes \alpha) = \text{ker}(\text{Id} \otimes \beta)$. Then we see

- For all $x \in M$, for all $c \in C$, we have $x \otimes c \in \text{Im}(\text{Id} \otimes \beta)$ because there exists $b \in B, \beta(b) = c$ and $x \otimes c = (\text{Id} \otimes \beta)(x \otimes b)$. Pure tensors $x \otimes c$ generate $M \otimes c$ hence $\text{Id} \otimes \beta$, say.
- We have $\beta \circ \alpha \implies (\mathrm{Id} \otimes \beta) \circ (\mathrm{Id} \otimes \alpha) = (\mathrm{Id} \otimes (\beta \circ \alpha)) = 0$. Hence this implies $\mathrm{Im}(\mathrm{Id} \otimes \alpha) \subseteq \ker(\mathrm{Id} \otimes \beta)$.
- Let $I = \text{Im}(\text{Id} \otimes \alpha)$ and let $\phi : M \otimes B \to M \otimes B/I$ be the quotient map. Let

$$f: M \otimes B/I \longrightarrow M \otimes C,$$

$$y + I \longmapsto (\mathrm{Id} \otimes \beta)(y)$$

then *f* is well defined since $I \subseteq \text{ker}(\text{Id} \otimes \beta)$. Moreover $\text{Id} \otimes \beta = f \circ \phi$. In order to prove $\text{ker}(\text{Id} \otimes \beta) = I$ it suffices to prove *f* is injective. Let

$$g: M \times C \longrightarrow (M \otimes B)/I,$$
$$(x, c) \longmapsto x \otimes b + I,$$

where $b \in \beta^{-1}(C)$. We see g is well defined: if $b, b' \in \beta^{-1}(C)$ then $x \otimes b + I = x \otimes b' + I$ (because $b - b' \in \ker(\beta) = \operatorname{Im}(\alpha) \Longrightarrow x \otimes b - x \otimes b' \in I$). Since g is bilinear, there exists $g^* : M \otimes C \to M \otimes B/I$ such that $x \otimes c \mapsto x \otimes b + I$ with $b \in \beta^{-1}(C)$. Moreover $g^* \circ f = \operatorname{Id}$ since $g^* \circ f(x \otimes b + I) = g^*(x \otimes \beta(b)) = x \otimes b + I$. Hence f is injective.

Hence If $A \to B \to C \to 0$ exact then $\forall M, F_M(A \to B \to C \to 0)$ is exact.

Corollary 6.2.5. A *R*-module *M* is flat (\mathfrak{F}_M is exact) if and only if $\forall \alpha : A \rightarrow B$ injective, the *R*-module homomorphism $\mathrm{Id}_M \otimes \alpha$ is injective.

Proof. (\Longrightarrow): Clear: $0 \longrightarrow A \xrightarrow{\alpha} B$ exact implies $0 \longrightarrow M \otimes A \xrightarrow{\operatorname{Id}_M \otimes \alpha} M \otimes B$ exact. (\Leftarrow): Suppose for all α injective, $\operatorname{Id}_M \otimes \alpha$ injective, then together with the above property, we have $\mathfrak{F}_M(shortexact)$ is short exact. Hence \mathfrak{F}_M is exact.

Corollary 6.2.6. For all $S \subseteq R$ multiplicative set, the R-module $S^{-1}R$ is flat.

Proof. Let $\alpha : A \to B$ be an injective R-module homomorphism, want to show $\ker(\operatorname{Id}_{S^{-1}R} \otimes \alpha) = 0$. Any element of $S^{-1}R \otimes A$ can be written as $\frac{1}{s} \otimes x$, where $s \in S, x \in A$. Then

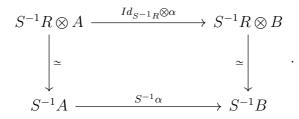
$$\begin{split} \mathrm{Id}_{S^{-1}R} \otimes \alpha(\frac{1}{s} \otimes x) &= 0 \Longrightarrow \frac{1}{s} \otimes \alpha(a) = 0 \\ \Longrightarrow \frac{\alpha(a)}{s} &= 0 \text{ in } S^{-1}A \Longrightarrow \exists u \in S, u\alpha(x) = 0 \\ &\Longrightarrow \exists u \in S, \alpha(ux) = 0 \\ &\Longrightarrow \exists u \in S, ux = 0 \text{ since } \alpha \text{ injective} \\ &\Longrightarrow \frac{x}{s} = 0 \text{ in } S^{-1}B \end{split}$$

 $\implies \frac{1}{s} \otimes x = 0$ by isomorphism.

Notation: For $S \subseteq R$ multiplicative set and $\alpha : A \rightarrow B R$ -module homomorphism, we define

$$S^{-1}\alpha: S^{-1}A \longrightarrow S^{-1}B,$$
$$\frac{x}{s} \longmapsto \frac{\alpha(x)}{s}.$$

Remark 6.2.7. The isomorphism $f_A : S^{-1}R \otimes A \to S^{-1}A$ "send" the homomorphisms $Id_{S^{-1}R} \otimes \alpha$ to $S^{-1}\alpha$ in the following sense:



Up to this "change of notation", Corollary 6.2.6 says that for any exact sequence of R-module

 $\cdots \longrightarrow M_i \xrightarrow{f_i} M_{i+1} \xrightarrow{f_{i+1}} \cdots$

The sequence

$$\cdots \longrightarrow S^{-1}M_i \xrightarrow{S^{-1}f_i} S^{-1}M_{i+1} \xrightarrow{S^{-1}f_{i+1}} \cdots$$

is exact sequence of $S^{-1}R$ -modules.

Corollary 6.2.8. We have

- The map α is injective $\implies S^{-1}\alpha$ is injective,
- The map β surjective $\implies S^{-1}\beta$ surjective,
- We have the isomorphism $S^{-1}(M/N) \simeq S^{-1}M/S^{-1}N$ with isomorphism $\frac{x+N}{s} \leftrightarrow \frac{x}{s} + S^{-1}N$.

Proof. We see

- The sequence $0 \to A \xrightarrow{\alpha} B$ exact $\Longrightarrow \cdots$,
- The sequence $A \xrightarrow{\beta} B \to 0$ exact $\Longrightarrow \cdots$,
- The sequence $0 \to N \to M \to M/N \to 0$ exact with the middle map $x \mapsto x + N$. Also $0 \to S^{-1}N \to S^{-1}M \to S^{-1}(M/N) \to 0$ exact with the middle map $\frac{x}{s} \mapsto \frac{x+N}{s}$. By first isomorphism theorem, this gives $S^{-1}(M/N) \simeq S^{-1}M/S^{-1}N$ with the claimed isomorphism.

Hence the corollary.

Remark 6.2.9. Let $Q \subseteq P$ be ideals of R, with P prime, by above corollary, we have $(R/Q)_P \simeq R_P/Q_P$ are isomorphic R-module. But in fact it implies $(R/Q)_{P/Q} \simeq R_P/Q_P$ as rings with the isomorphism $\frac{x+Q}{s+Q} \leftrightarrow \frac{x}{s} + Q_P$.

Example 6.2.10. Homework 6...

Example 6.2.11. Extension of scalars preserve flatness. Let $\phi : R \to T$ ring homomorphism. If M is flat R-module, then $T \otimes_R M$ is a flat T-module.

Corollary 6.2.12. The module M is a flat R-module implies that $S^{-1}M$ is a flat $S^{-1}R$ -module.

6.3 Local Properties of Modules and Rings

Notation: For $P \subseteq R$ prime ideal, we denote $R_P = S^{-1}R$ where $S = R \setminus P$. We denote $M_P := S^{-1}M$ for R-module M and $\alpha_P := S^{-1}\alpha$ for homomorphism α .

Definition 6.3.1. A property of a ring/module/homomorphism is **local** if *X* has property if and only if X_P has property for all $P \subseteq R$ prime.

Proposition 6.3.2. *The following are equivalent:*

- (1). The module M = 0,
- (2). The module $M_P = 0$ for all $P \subseteq R$ prime ideal,
- (3). The module $M_P = 0$ for all $P \subseteq R$ maximal ideal.

Proof. $(1) \Longrightarrow (2) \Longrightarrow (3)$ are obvious.

For (3) \implies (1), let M be such that $M_P = 0$ for all P maximal ideal. Suppose for contradiction there exists $x \neq 0$ in M, let $\operatorname{Ann}(x) = \{r \in R | rx = 0\}$. This is a proper ideal because it does not contain 1. This implies that $\exists P$ maximal at $\operatorname{Ann}(x) \subseteq P$. Then $M_P = 0 \implies \frac{x}{1} = 0$ in $M_P \implies \exists u \notin P, ux = 0$. Hence $u \in \operatorname{Ann}(x) \setminus P$, a contradiction.

Proposition 6.3.3. *The following are equivalent for* $\phi \in \text{Hom}_R(A, B)$ *,*

- (1). The map ϕ is injective,
- (2). The map ϕ_P is injective for all $P \subseteq R$ prime ideal,
- (3). The map ϕ_P is injective for all $P \subseteq R$ maximal ideal.

Proof. $(1) \Longrightarrow (2)$ already proved.

 $(2) \Longrightarrow (3)$ is obvious.

(3) \implies (1): Suppose ϕ_P injective for all P maximal. Let $M = \ker(\phi)$, the seq that $0 \rightarrow M \rightarrow A \xrightarrow{\phi} B$ is exact implies that for all P maximal, the sequence $0 \rightarrow M_P \rightarrow A_P \xrightarrow{\phi_P} B_P$ exact. The map ϕ_P is injective implies that $\forall P$ maximal ideal $M_P = 0$ which implies M = 0 by proposition above.

Proposition 6.3.4. Same as the above proposition but with "surjective".

Proposition 6.3.5. *The following are equivalent for a R-module M,*

- (1). The map M is flat R-module,
- (2). The map M_P is flat R_P -module for all $P \subseteq M$ prime,
- (3). The map M_P is flat R_P -module for all $P \subseteq M$ maximal.

Proof. (1) \implies (2): Already "proved" (extensions of scalars preserves flatness). (2) \implies (3): Obvious.

(3) \implies (1): Sketch: Suppose M_P is flat for all P maximal, want to show for all ϕ injective, the map $\mathrm{Id}_M \otimes \phi$ is injective. For all $P, \mathrm{Id}_{M_P} \otimes \phi_P$ injective. Also $\mathrm{Id}_{M_P} \otimes \phi_P \simeq (\mathrm{Id}_M \otimes \phi)_P$ via isomorphism implies $(\mathrm{Id}_M \otimes \phi)_P$ is injective for all P. This implies that $\mathrm{Id}_M \otimes \phi$ is injective.

Noetherian Rings, Noetherian Modules and Hilbert's Nullstellensatz

7.1 Closure Property for Noetherian

Reminder: Let *M* be a *R*-module, the following are equivalent:

- Any strictly increasing sequence of submodule is finite,
- Any submodule is finitely generated.

If these property hold, then *M* is called **Noetherian**.

Definition 7.1.1. A ring *R* is **Noetherian** if it is Noetherian as *R*-module. That is to say

- (1). Any strictly increasing sequence of ideals is finitely generated.
- (2). Any ideal is finitely generated.

Proposition 7.1.2. *Let* M *be a* R*-module, and* $N \subseteq M$ *submodule, then* M *is Noetherian if and only if* N *and* M/N *are Noetherian.*

Proof. (\implies): The submodule of *N* and *M*/*N* are in bijection with subsets of submodules of *M*, hence no infinite strictly increasing sequence.

(\Leftarrow): Suppose *N* and *M*/*N* are Noetherian, let $P \subseteq M$ be submodule, then $P/(P \cap N) \simeq (P + N)/N$ is finitely generated and $P \cap N$ is finitely generated (generators $x_1 + P \cap N, \dots, x_k + P \cap N$ and generators y_1, \dots, y_l). That is *P* is finitely generated (generators $x_1, \dots, x_k, y_1, \dots, y_l$). \Box

Corollary 7.1.3. *The module* M_1 , M_2 *are Noetherian if and only if* $M_1 \oplus M_2$ *is Noetherian.*

Proof. Let $\widetilde{M}_1 = \{(x,0), x \in M_1\} \subseteq M_1 \oplus M_2$. Then $\widetilde{M}_1 \simeq M_1$ and $(M_1 \oplus M_2)/M_1 \simeq M_2$. Apply previous prop to $M = M_1 \oplus M_2$ and $N = \widetilde{M}_1$.

Corollary 7.1.4. If R is Noetherian, then M is Noetherian R-module if and only if M is finitely generated R-module.

Proof. (\Leftarrow) : Obvious.

 (\Longrightarrow) : If *M* is finitely generated, then $M \simeq R^k/N$ for some $N \subseteq R^k$. Moreover, R^k is Noetherian by Corollary 7.1.3.

Theorem 7.1.5 (Hilbert's Basis Theorem). If *R* is Noetherian ring, then for any *n*, we have $R[X_1, \dots, X_n]$ is Noetherian ring.

Proof. It suffices to show R is Noetherian implies R[X] is Noetherian. Let R be Noetherian, let $I \subseteq R[X]$ be an ideal, we want to show I is finitely generated.

Suppose it is not, let $P_0 = 0$ and for all j > 0, let $P_j \in I \setminus (P_0, \dots, P_{j-1})$ such that P_j is of minimal degree in this set (note that $\deg(P_j)$ is weakly increasing).

Let a_j be the leading coefficient of P_j , since R[X] is Noetherian, it has an infinite increasing chain of ideals. There exists k > 0, $a_k \in (a_1, \dots, a_{k-1})$, hence $a_k = \sum_{j=1}^{k-1} r_j a_j, r_j \in R$. Let $P = P_k - \sum_{j=1}^{k-1} r_j X^{\deg(P_k) - \deg(P_j)} P_j$, then $P \in I \setminus (P_0, \dots, P_{k-1})$, and the degree $\deg(P) < \deg(P_k)$. This contradicts the choice of P_k .

Recall that *T* is a finitely generated *R*-algebra if there is $x_1, \dots, x_n \in T$ such that any $t \in T$ can be written as a polynomial in x_1, \dots, x_n with coefficients in *R*. Equivalently, there is surjective *R*-algebra homomorphism from $R[X_1, \dots, X_n]$ to *T*.

Corollary 7.1.6. If R is a Noetherian ring, and T is a finitely generated R-algebra, then T is a Noetherian ring.

Proof. The algebra *T* is the image of Noetherian ring $R[X_1, \dots, X_n]$ hence Noetherian (quotient of Noetherian is Noetherian).

7.2 Hilbert's Nullstellensatz

Theorem 7.2.1 (Hilbert's Nullstellensatz). Let K be algebraically closed field, let $R = K[X_1, \dots, X_n]$ and let $I \subseteq R$ ideal and let $Z(I) = \{x \in K^n | \forall g \in I, g(x) = 0\}$. For polynomial f, we have that $f(x) = 0, \forall x \in Z(I)$ if and only if $f \in r(I)$.

Example 7.2.2. Let $I = (X_1^2, X_2), Z(I) = \{(0, 0)\}$. The theorem tells us f((0, 0)) = 0 if and only if $f \in r(I) = (X_1, X_2)$.

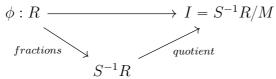
Lemma 7.2.3 (Zariski's Lemma). Let $K \subseteq E$ be a field extension, if E is finitely generated K-algebra, then E is finite dimensional (hence algebraic) over K.

Proof of Theorem 7.2.1, "Hilbert's Nullstellensatz". (\iff) : We have $f \in r(I) \implies \exists k \ge 0, f^k \in I \implies \exists k \ge 0, f^k(0) = 0, \forall x \in Z(I) \implies f(x) = 0, \forall x \in Z(I).$

 (\Longrightarrow) : Let $f \notin r(I)$, we want to show that there exists $x \in Z(I)$ such that $f(x) \neq 0$.

Idea: Any ring homomorphism $\phi : R \to K$ such that $\phi|_K = \text{Id}$ is an evaluation map $\text{ev}_x : g \mapsto g(x)$ for some $x \in K^n$ $(x = (x_1, \dots, x_n), x_i = \phi(x_i))$. Hence any ring homomorphism $\phi : R \to K$ such that $\phi|_K = \text{Id}$ and $\phi|_I = 0$ is ev_x for some $x \in Z(I)$. Therefore need to find a ring homomorphism $\phi : R \to K$ such that $\phi|_K = \text{Id}$ and $\phi|_I = 0, \phi(f) \neq 0$.

Let $S = \{f^k | k \ge 0\}$. This is a multiplicative set of R, and we have $f \notin r(I) \Longrightarrow$ $S \cap I = \emptyset \Longrightarrow S^{-1}I$ is proper ideal of $S^{-1}R \Longrightarrow S^{-1}I \subseteq M$ maximal ideal of $S^{-1}R$. Let



We observe $\phi|_I = 0$ since $S^{-1}I \subseteq M$ and $\phi(f) \neq 0$ since $\frac{f}{1}$ is invertible in $S^{-1}R \Longrightarrow \frac{f}{1} \notin M$. Moreover $T \simeq K$. Indeed, T is a field since M is maximal ideal. Also T is finitely generated over K (indeed $S^{-1}R = \{\frac{P}{f^k}, P \in R, k \ge 0\}$ with generators $\frac{x_1}{1}, \dots, \frac{x_n}{1}, \frac{1}{f}$). Hence $T = S^{-1}R/M$ is finitely generated. Hence by Zariski's Lemma (Lemma 7.2.3), we have T is algebraic over K. Then K is algebraically closed implies that $T = \tilde{K}$, where \tilde{K} is copy of K inside T. Hence up to composing by an isomorphism $\tilde{K} \to K$ we get $\tilde{\phi} : R \to K$ such that $\phi|_K = \mathrm{Id}, \phi(I) = 0, \phi(f) \neq 0$.

It remains to prove Zariski's Lemma. We first claim a lemma.

Lemma 7.2.4. Let $R \subseteq S \subseteq T$ be ring (hence S, T are R-algebras), suppose:

- ring R is Noetherian,
- T is finitely generated R-algebra and finitely generated S-module,

then S is finitely generated R-algebra.

Proof. Let x_1, \dots, x_n be generators of T as R-algebra, y_1, \dots, y_m be generators of T as S-module. Then y_1, \dots, y_m generators implies that there is $s_{ij} \in S, x_i \in \sum_j s_{ij}y_j$, hence there is $s_{ijk} \in S, y_iy_j = \sum_k s_{ijk}y_k$. Let $S' = R[\{s_{ij}, s_{ijk}\}]$ be R-algebra generated by s_{ij}, s_{ijk} , we have $R \subseteq S' \subseteq S \subseteq T$.

Since S' is a finitely generated R-algebra, S' is Noetherian ring. Any $x \in T$ is a polynomial in the x_i , hence a linear combination of y_k with coefficients in S'. Hence T is a finitely generated S' module. Therefore T is Noetherian S'-module (since S' Noetherian). Further, *S* submodule of *T* implies that it is a finitely generated S'-module. Lastly, *S'* finitely generated *R*-algebra and *S* finitely generated *S'*-algebra implies that *S* is finitely generated *R*-algebra.

Now we are to prove the Zariski's Lemma.

Proof of Lemma 7.2.3, "*Zariski's Lemma*". Let $K \subseteq E$ be a field extension such that E is finitely generated K-algebra, we want to show E is finite dimensional over K.

Let x_1, \dots, x_n be generators of *E* as *K*-algebra, it suffices to show that x_1, \dots, x_r are algebraic over *K*.

Suppose not and order the x_i such that $\forall i = 1, \dots, r, x_i$ is not algebraic over $K(x_1, \dots, x_{i-1})$ and $\forall i = r + 1, \dots, n, x_i$ is algebraic over $K(x_1, \dots, x_r)$. Let $F = K(x_1, \dots, x_r) \subseteq E$ be field generated by $x_1, \dots, x_r \simeq K(x_1, \dots, x_r)$ fields of rational functions in n variables. Then $E = F(x_{r+1}, \dots, x_n)$ is finite F-module and E is finitely generated K-algebra together with previous lemma implies that F is finitely generated K-algebra.

Let f_1, \dots, f_k be generators of $K(x_1, \dots, x_r)$ over K. Let P_1, \dots, P_l be the irreducible polynomial dividing the denominators of f_1, \dots, f_k . Then any denominators of $K[f_1, \dots, f_k]$ is constant or multiple of one of the P_i .

But $\frac{1}{\prod_i P_i + 1}$ is not of this form, which is a contradiction.

7.3 Some Link to Algebraic Geometry

Definition 7.3.1. Let *K* be an algebraically closed field, let $R = K[X_1, \dots, X_n]$, then

- For $Y \subseteq K^n$, we define $I(Y) = \{f \in R | f(x) = 0, \forall x \in Y\}$,
- For $S \subseteq R$, we define $Z(S) = \{x \in K^n | f(x) = 0, \forall f \in S\}.$

A set of points of the form Z(S) is called **algebraic set**.

(Claim: Any algebraic set is of the form Z(J) where J is a radical ideal (that is, r(J) = J) and $\{Y \subseteq K^n \text{ algebraic set}\} \stackrel{I}{\underset{Z}{\longrightarrow}} \{J \subseteq R \text{ radical ideal}\}$ are inclusion reserving bijections.)

Remark 7.3.2. (1). The map I, Z are inclusion reserving, that is

$$Y \subseteq Y', I(Y) \supseteq I(Y'),$$
$$S \subseteq S', Z(S) \supseteq Z(S').$$

(2). For all $S \subset R$, we have Z(S) = Z((S)) = Z(r(S)).

Example 7.3.3. We have $Z({X_1^2}) = Z((X_1^2)) = Z((X_1))$.

By above, any algebraic set is of the form Z(J) where J is radical ideal.

Remark 7.3.4. (1). For all Y, I(Y) is clearly an ideal and a radical ideal.

(2). Hilbert's Nullstellensatz can be stated as follows: for all *J* ideal, we have I(Z(J)) = r(J) (no more than r(J)).

Example 7.3.5. We see $I(Z(X_1^2)) = (X_1)$.

Consequently, we have

- for all *J* radical ideal, I(Z(J)) = J,
- for all *Y* algebraic set, there exists *J* radical ideal such that Y = Z(J), hence, Z(I(Y)) = Z(I(Z(J))) = Z(J) = Y.

Corollary 7.3.6. We have I, Z are inclusion reversing bijections that

$$\{Y \subseteq K^n \text{ algebraic set}\} \stackrel{I}{\rightleftharpoons} \{J \subseteq R \text{ radical ideal}\}.$$

Remark 7.3.7. We have that

- (a). The identity $I(Y_1 \cup Y_2) = I(Y_1) \cap I(Y_2)$,
- (b). If J_1, J_2 are radical ideals, then $J_1 \cap J_2$ is radical ideal and $Z(J_1 \cap J_2) = Z(J_1) \cup Z(J_2)$.

Proof. (a). Clear.

(b). We have $J_1 \cap J_2$ radical ideal because $r(J_1 \cap J_2) = r(J_1) \cap r(J_2) = J_1 \cap J_2$. Then $I(Z(J_1 \cap J_2)) = J_1 \cap J_2 = I(Z(J_1)) \cap I(Z(J_2)) \stackrel{(a)}{=} I(Z(J_1) \cup Z(J_2))$ and I is a bijection.

Remark 7.3.8. Part (b) above implies that finite union of algebraic set is algebraic set. Also since arbitrarity the intersection of algebraic set is algebraic set (homework).

Definition 7.3.9. An **affine algebraic variety (AAV)** is an algebraic set which is not the union of smaller algebraic set.

Corollary 7.3.10. We have I, Z are bijection

$$\emptyset \neq \{Y \subseteq K^n, AAV\} \longleftrightarrow \{I \subseteq R \text{ prime ideal}\}.$$

Proof. By Remark 7.3.7 (b), we have *Y* is affine algebraic variety if and only if Y = Z(J) with *J* **irreducible** radical ideal, where **irreducible** means "not intersection of bigger ideals". Moreover,

- if *J* is prime then *J* is radical and irreducible (exercise from homework 4 shows that prime means irreducible, $P = \cap I_j \Longrightarrow P = I_j$).
- Conversely, suppose *J* is radical and irreducible, then *J* radical implies that $J = r(J) = \bigcap_{J \subseteq P \text{ prime}} P$. Also *J* irreducible implies that *J* is one of the *P*, hence prime.

Hence the bijection.

Definition 7.3.11. Let $Y \subseteq K^n$ be algebraic set, then R(Y) = R/I(Y) is called affine coordinate ring ("polynomial f on Y").

Remark 7.3.12. We have

- The set *Y* is affine algebraic variety if and only if R(Y) is a domain.
- {point on *Y*} is in bijection with {maximal ideals of *R* containing *Y*}, which is in bijection with {maximal ideals of *R*(*Y*)}.

Explicitly $y \in Y \mapsto M(Y, y) = \{ \widetilde{f} \in R(Y) | f(y) = 0 \}.$

Definition 7.3.13. Let $Y \subseteq K^n$ be affine algebraic variety, then

- $U \subseteq Y$ is an **open set** if $U = Y \setminus Z(S)$ for some $S \subseteq R$,
- A regular function of $U \subseteq Y$ is $\rho : Y \longrightarrow K$ such that $\exists f, g \in R, \forall x \in U, g(x) \neq 0$ and $\rho(x) = \frac{f(x)}{g(x)}$.

Notation: We say $O(Y) = \{\text{regular function on } Y\}$ and $O(Y, y) = \{(U, \rho) | y \in U \text{ open set of } Y, \rho \text{ regular on } U\}$ where $(U, \rho) \sim (U', \rho')$ if and only if there exists V open set $y \subseteq V \subseteq U \cap U'$ such that $\rho|_V = \rho'|_V$.

Theorem 7.3.14. We have

(1). the isomorphism $O(Y) \simeq R(Y)$ as rings, where the isomorphism is given

$$\alpha: R(Y) \longrightarrow O(Y),$$

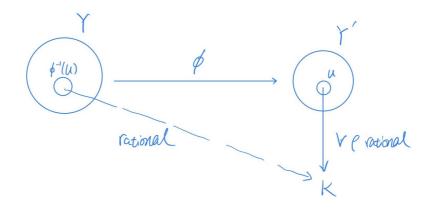
$$\widetilde{f} \longmapsto f|_Y \text{ as a function.}$$

(2). for all $y \in Y, O(Y, y) \simeq R(Y)_{M(Y,y)} \longleftarrow \{ \tilde{g} \in R(Y) | g(y) = 0 \}$ where the right hand side of the isomorphism is a localization at M(Y, y). The isomorphism is given by

$$\beta : R(Y)_{M(Y,y)} \longrightarrow O(Y,y),$$
$$\widetilde{f}_{\widetilde{g}} \longmapsto (v, \frac{f}{g}|_v), \text{ where } U = \{x \in Y | g(x) \neq 0\}.$$

Definition 7.3.15. Let Y, Y' be affine algebraic varieties, a function $\phi : Y \to Y'$ is a **morphism of affine algebraic varieties**, if $U \subseteq Y'$ open, for all $\rho : U \to K$ regular, then $\rho \circ \phi$ regular on $\phi^{-1}(U)$.

The definition can be viewed as the following commutative diagram:



Theorem 7.3.16. We have $Y \simeq Y'$ if and only if $R(Y) \simeq R(Y')$. In fact there is function $F: Y \rightarrow R(Y)$ such that $\mathcal{F}: \text{Hom}(Y, Y') \rightarrow \text{Hom}(R(Y'), R(Y))$ is a bijection.

Primary Decomposition of Ideals

8.1 Reduced Primary Decomposition

Motivation:

- decomposing algebraic set into variety,
- "replacing" factorization of elements in Noetherian rings which are not UFD.

Example 8.1.1. Consider $R = \mathbb{Z}[i\sqrt{5}] \subseteq \mathbb{C}$, it is Noetherian but not UFD since $2 \cdot 3 = (1 + i\sqrt{5})(1 - i\sqrt{5})$.

However, there is "semisimple" factorization of ideals.

Definition 8.1.2. Let *R* be a (commutative) ring. Any ideal $Q \subseteq R$ is **primary** if $Q \neq R$ and $x \notin Q, y \notin r(Q)$ implies that $xy \notin Q$. It has some equivalent phrasing:

- If $xy \in Q$ then either $x \in Q$ or $y \in r(Q)$,
- If $xy \in Q, x, y \notin Q$ then there is some n > 0 such that $x^n \in Q$ and $y^n \in Q$.

Remark 8.1.3. Prime implies primary.

Example 8.1.4. Take $R = \mathbb{Z}$, the primary ideal are of the form $I = (p^k), p$ prime integer.

Example 8.1.5. If *M* is a maximal ideal then for all k, M^k is primary.

Proposition 8.1.6. If Q is primary, then r(Q) is the smallest prime ideal containing Q.

Definition 8.1.7. We say *Q* is P-**primary** if r(Q) = P.

Proof. Since $r(Q) = \bigcap_{Q \subseteq P \text{ prime}} P$, it suffices to show r(Q) is prime. We have $xy \in r(Q) \Longrightarrow \exists k, x^k y^k \in Q$ with Q being P primary it then implies that $\exists k, m$, such that $x^k \in Q$ or $y^{km} \in Q$. Hence x or y is in r(Q).

Definition 8.1.8. Let $I \subseteq R$ be ideal, then

- A primary decomposition of *I* is an expression of the form $I = \bigcap_{i=1}^{k} Q_i$ with Q_i primary.
- A primary decomposition is reduced if
 - (a). for all $j, \bigcap_{i \neq j} Q_i \subseteq Q_j$,
 - (b). all the $r(Q_i)$ are distinct.

We call this reduced primary decomposition as RPD.

Example 8.1.9. If $R = \mathbb{Z}$, there exists unique RPD for any ideal. The RPD of $(p_1^{k_1} \cdots p_m^{k_m})$ is $\bigcap_{i=1}^m (p_i^{k_i})$.

Lemma 8.1.10. If Q_1, Q_2 are primary such that $r(Q_1) = r(Q_2)$, then $Q = Q_1 \cap Q_2$ is primary and $r(Q) = r(Q_1) = r(Q_2)$. Thus from any primary decomposition one can create a RPD.

Proof. We see

•
$$r(Q) = r(Q_1 \cap Q_2) = r(Q_1) \cap r(Q_2) = r(Q_1).$$

- *Q* is primary, $xy \in Q$ and $y \notin r(Q) = r(Q_1) = r(Q_2)$ implies that $x \in Q_1 \cap Q_2 = Q$.
- Thus if $Q_i = Q_j$, reduce Q_i, Q_j by $Q_i \cap Q_j$.

Hence the lemma.

Example 8.1.11. Take $R = \mathbb{C}[X, Y]$, then $I = (X^2, XY)$ has (at least) 2 RPD:

$$I = (X) \cap (X^2, XY, Y^2) = (X) \cap (X^2, Y).$$

Notation: For $I \subseteq R$ ideal, and $z \in R$, we say $(I : z) = \{r \in R | rz \in I\}$ (this is an ideal containing *I*).

Theorem 8.1.12. If $I = \bigcap_{i=1}^{m} Q_i$ is RPD then

$$\{r(Q_1), \cdots, r(Q_m)\} = \{\text{prime ideals of the form } r(I:x), x \in R\}.$$

Example 8.1.13. Take $R = \mathbb{C}[X, Y], I = (X^2, XY)$, then r(X) = (X) = r(I : Y) and $r((X^2, XY, Y^2)) = r((X^2, Y)) = (X, Y) = r(I : X)$. For any $z \neq X, Y$ either r(I : z) = (X) or (X, Y) or is not prime.

Lemma 8.1.14. If $Q \subseteq R$ is primary then for any $x \in R$, we have

$$r(Q:x) = \begin{cases} R & \text{if } x \in Q, \\ r(Q) & \text{if } x \notin Q. \end{cases}$$

Proof. We have

- $x \in Q \Longrightarrow (Q:x) = R \Longrightarrow r(Q:x) = R$,
- $x \notin Q, y \in r(Q:x) \iff \exists n \ge 0, y^n x \in Q \stackrel{Q \text{ primary}}{\iff} \exists m > 0, y^m \in Q \iff y \in r(Q).$

This gives the lemma.

Proof of Theorem 8.1.12. Let $I = \bigcap_{i=1}^{n} Q_i$ RPD, observe that $r(I : x) = r((\bigcap Q_i) : x) = r(\bigcap(Q_i : x)) = \bigcap(r(Q_i : x)) = \bigcap_{i \text{ such that } x \notin Q_i} r(Q_i)$. Now we want to show $\{r(Q_1), \dots, r(Q_m)\} = \{r(I : x) \text{ prime}\}.$

(\subseteq): **reduced** decomposition implies that for all *j*, there is $x_j \in \bigcap_{i \neq j} Q_i \setminus Q_j$. Hence $r(I : x_j) = r(Q_j)$.

(\supseteq): Suppose r(I : x) is prime, $r(I : x) = \bigcap_{i,x \notin Q_i} r(Q_i)$ since prime ideals are irreducible (cannot be written as intersection of bigger ideals), we get $r(I : x) = r(Q_i)$ for some *I*.

Theorem 8.1.15 (Weak Second Uniqueness Theorem). Suppose $I = \bigcap_{i=1}^{n} Q_i$ is RPD, if $j \in [n]$ is such that $r(Q_j)$ does not contain $r(Q_i), \forall i \neq j$, then Q_j appears in every RPD of I.

Example 8.1.16. Consider the ideal $I = (X^2, XY) \subseteq \mathbb{C}[X, Y]$ and $I = (X) \cap (X^2, XY, Y^2), r(X) = (X)$ does not contain $r(Q_i), i \neq j$. Hence (X) will appear in every RPD.

Stronger version: for all $S \subseteq \{r(Q_i)\}$ closed downward, $\bigcap_{r(Q_i)\in S} Q_i$ is independent of RPD.

Lemma 8.1.17. Let $Q \subseteq R$ primary ideal and let $S \subseteq R$ be multiplicative set, then $Q \cap S = \emptyset$ implies

- (a). $r(Q) \cap S \neq \emptyset$,
- (b). Q is a contraction (for the fraction map $\epsilon : R \to S^{-1}R$),
- (c). $S^{-1}Q$ is also primary.

Proof. We check one by one.

8.1. REDUCED PRIMARY DECOMPOSITION

- (a). Suppose $r(Q) \cap S \neq \emptyset$, then $\exists x \in R, n \ge 0, x \in S, x^n \in Q$ hence $x^n \in Q \cap S$ which implies $Q \cap S \neq \emptyset$, a contradiction.
- (b). Recall Q is contraction if and only if $s \in S, x \notin Q \implies sx \notin Q$. Let $s \in S, x \notin Q$, then S multiplicative set implies that $\forall n, s^n \in S$ thus $\forall n, s^n \notin Q$. Hence $s \notin r(Q)$. Then Q is primary so $x \notin Q, s \in r(Q) \implies sx \notin Q$.
- (c). Easy check.

Hence the lemma.

Remark 8.1.18. Easy to check that the contradiction of a primary ideal is primary. Thus (b) above implies

{primary ideal
$$I \subseteq R \setminus S$$
} $\stackrel{bijection}{\longleftrightarrow}$ {primary ideal of $S^{-1}R$ },
 $I \longmapsto S^{-1}I$

Proof of Theorem 8.1.15. Let $I = \bigcap_{i=1}^{n} Q_i = \bigcap_{i=1}^{n} Q'_i$ such that $r(Q_i) = r(Q'_i)$. Suppose $r(Q_j)$ does not contain $r(Q_i)$ for all $i \neq j$. Want to show $Q_j = Q'_j$. Let

$$S = R \setminus r(Q_j), \forall i \neq j, r(Q_i) \cap S \neq \emptyset \xrightarrow{(a)} Q_i \cap S \neq \emptyset \Longrightarrow S^{-1}Q_i = S^{-1}R.$$

Thus $S^{-1}I = S^{-1}(\bigcap Q_i) = \bigcap (S^{-1}Q_i) = S^{-1}Q_i$. Since $r(Q'_i) = r(Q'_i)$

Thus $S^{-1}I = S^{-1}(\bigcap_{i} Q_{i}) = \bigcap_{i} (S^{-1}Q_{i}) = S^{-1}Q_{j}$. Since $r(Q'_{i}) = r(Q_{i})\forall i$, the same holds and $S^{-1}I = S^{-1}(\bigcap_{i} Q'_{i}) = \bigcap_{i} (S^{-1}Q'_{i}) = S^{-1}Q'_{j}$. hence $S^{-1}Q_{j} = S^{-1}Q'_{j}$ and since Q_{j}, Q'_{j} are contractions, $Q_{j} = (S^{-1}Q_{j})^{c} = (S^{-1}Q'_{j})^{c} = Q'_{j}$.

Theorem 8.1.19. *If R is Noetherian, then any ideal admits a RPD.*

Lemma 8.1.20. If *R* is Noetherian, then any ideal is a finite intersection of irreducible ideals.

Proof. Suppose for contradiction that I cannot be written as finite intersection of irreducibles. In this case there is I_1, J_1 ideals of $I = J_1 \cap I_1$ with $I \subsetneq I_1$ and I_1 cannot be written as intersections of ideals, $I = J_1 \cap J_2 \cap I_2, I_1 \subseteq I_2$, and I_2 We get (I_n) strictly increasing infinite chain of ideals. It is impossible in R Noetherian.

Lemma 8.1.21. If R is Noetherian, then I irreducible implies I primary.

Proof. Let *I* be irreducible, let $x, y \in R, xy \in I, x \notin I$, we need to show $y \in r(I)$ (consider ideals $(I : y^n) = \{r \in R, xy^n \in I\}$). This is a weakly increasing chain of ideal implies that $\exists n, (I : y^n) = (I : y^{n+1})$.

We claim $(I + x) \cap (I + y^n) = I$. Indeed let $z \in (I + x) \cap (I + y^n)$, then $z \in (I + x) \Longrightarrow zy \in I$. And $z \in (I + y^n) \Longrightarrow z = ry^n + z', r \in R, z' \in I \Longrightarrow ry^{n+1} \in I \Longrightarrow r \in (I : y^{n+1}) = (I : y^n) \Longrightarrow ry^n \in I \Longrightarrow z \in I$.

Since *I* is irreducible, (and $I + x \neq I$), we get $I + y^n = I$. Hence $y^n \in I \Longrightarrow y \in r(I)$ as wanted.

Hence we showed

- The existence of RPD if *R* is Noetherian,
- First uniqueness: $r(Q_i)$ is uniquely determined,
- Second uniqueness: Q_i of "small" $r(Q_i)$ uniquely determined.

Example 8.1.22. If *R* is Noetherian, then any radical ideal *I* has unique decomposition $I = \bigcap_{i=1}^{n} P_i$, P_i prime, $P_j \not\supseteq \bigcap_{i=j} P_i$. This induces that any algebraic set can be written uniquely as finite union of AAVs.

8.2 Dimensions

Remark 8.2.1. In \mathbb{Z} any ideal has a **unique** RPD. This is related to the fact that $\dim(\mathbb{Z}) = 1$.

Definition 8.2.2. The **dimension of a ring** *R* is the maximal *k* such that there exists $P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_k \subsetneq R$ prime ideal.

Example 8.2.3. We have $\dim(\mathbb{Z}) = 1$, $P_0 = (0)$, $P_1 = (p)$ where p prime integers.

Remark 8.2.4. A domain *R* has dimension 0 if and only if *R* is a field.

A domain R has dimension 1 if and only if any prime ideal that is not 0 is maximal.

Proposition 8.2.5. In a Noetherian domain of dimension 1, any ideal has a unique RPD.

Proof. If *R* is Noetherian, this means that any ideal *I* has RPD $I = \bigcap Q_i$. Moreover (if $I \neq 0$), $r(Q_i)$ is maximal for all *i*, hence second uniqueness theorem gives Q_i are uniquely determined.

Remark 8.2.6. If *R* is domain of dimension 1, then $I = \bigcap Q_i$ RPD if and only if $I = \prod Q_i, Q_i$ primary and $r(Q_i)$ distinct.

Indeed, $r(Q_i)$ maximal distinct means that $r(Q_i) + r(Q_j) = R$ for all $i \neq j$ which implies that $Q_i + Q_j = R, \forall i \neq j$. This implies that $\bigcap Q_i = \prod Q_i$ (Exercise).

Coming next: In integrally closed Noetherian domain of dimension 1, any ideal can uniquely be written as product of prime ("Dedekind domain").

Integral Dependence and Nakayama Lemma

9.1 Nakayama Lemma

Lemma 9.1.1. Let M be a finitely generated R-module, let $\phi \in \operatorname{End}_R(M)$ and let $I \subseteq R$ ideal such that $\operatorname{Im}(\phi) \subseteq I \cdot M$ ($I \cdot M = \{\sum r_i x_i | r_i \in I, x_i \in M\}$). Then $\exists n > 0, r_1, \cdots, r_n \in I$ such that $\phi^n + r_1 \phi^{n-1} + \cdots + r_n \operatorname{Id} = 0$.

Proof (generalization of Caylay-Hamilton Proof). Let x_1, \dots, x_n generators of M. For all i, there exists $a_{ij} \in I$ such that $\phi(x_i) = \sum_{j=1}^n a_{ij}x_j$, then

$$A\begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ \vdots\\ 0 \end{pmatrix} \text{ where } A = (\delta_{ij}\phi - a_{ij}\mathrm{Id})_{ij\in[n]} \in \mathrm{Mat}_n(\mathrm{End}_R(M)).$$

Let B = adjoint of $A = {}^{t}(cofactors of A)$, then

$$B \cdot A = \begin{pmatrix} \det(A) & 0 \\ \vdots & \ddots & \vdots \\ 0 & \det(A) \end{pmatrix} \text{ where } \det(A) = \det(\delta_{ij}\phi - a_{ij}\mathrm{Id}) \in \mathrm{End}_R(M),$$

where the right hand side is $\sum_{\delta \in S_n} \operatorname{sgn}(\delta)$.

We have $BA\begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{pmatrix} = 0$ implies that for all i, $det(A)(x_i) = 0$ which means det(A) = 0.

Corollary 9.1.2 (Nakayama). If M is finitely generated R-module, and $I \subseteq R$ ideal such that $I \cdot M = M$, then $\exists x \in I, (1 - x)M = 0$.

Proof. For $\phi = \text{Id}_M$, we have $\text{Im}(\phi) \subseteq I \cdot M$. This implies that $\exists r_1, \cdots, r_n \in I$ such that $(1 + r_1 + \cdots + r_n) \text{Id}_M = 0$. Take $x = -(r_1 + \cdots + r_n)$.

Definition 9.1.3. The Jacobson ideal of R is $J = \bigcap_{P \subseteq R \text{ maximal}} P$ (it is a radical ideal).

Proposition 9.1.4. We have $J = \{x \in R | \forall r \in R, 1 + rx \text{ is unit} \}$.

Proof. Homework 8.

Corollary 9.1.5. If M is finitely generated R-module and $J \cdot M = M$, then M = 0.

Proof. By Corollary 9.1.2, there is $x \in J$, (1 - x)M = 0. Hence $x \in J \implies 1 - x$ is a unit hence M = 0.

Corollary 9.1.6. Let M be finitely generated R-module, and $N \subseteq M$ submodule, such that $M = N + J \cdot M$. Then M = N.

Proof. We have $M = N + J \cdot M \Longrightarrow J \cdot M/N = (N + J \cdot M)/N = M/N \Longrightarrow M/N = 0.$

Corollary 9.1.7. Let R be local ring and let P be its maximal ideal, let M be finitely generated R-module and let $x_1, \dots, x_n \in M$ such that $\{x_1 + P \cdot M, \dots, x_n + P \cdot M\}$ generates $M/P \cdot M$ as R/P-vector space. Then x_1, \dots, x_n are generators of M over R.

Proof. Let $N = R\langle x_1, \dots, x_n \rangle \subseteq M$ submodule generated by x_1, \dots, x_n . We have $M = N + P \cdot M$, since $J = \bigcap_{I \text{ max}} I = P$. This implies M = N.

9.2 Integral Dependence

Definition 9.2.1. Let $R \subseteq T$ be rings, $\alpha \in T$ is integral over R if $\exists n > 0, r_1, \dots, r_n \in R$ such that $\alpha^n + r_1 \alpha^{n-1} + \dots + r_n = 0$.

Example 9.2.2. We have

- Any $\alpha \in R$ is integral over R.
- For *R* field, α integral over *R* if and only if α algebraic over *R*.
- For $R = \mathbb{Z}, T = \mathbb{Q}$, only integers are integral over \mathbb{Z} . If $\alpha = \frac{a}{b} \in \mathbb{Q} \setminus \mathbb{Z}$, then we can take gcd(a, b) = 1 by $(\frac{a}{b})^n + r_1(\frac{a}{b})^{n-1} + \cdots + r_n = 0$. Then a^n divisible by b, which is impossible.

Notation: For $R \subseteq T$ and $\alpha \in T$, we denote $R[\alpha] = R\langle \alpha, \alpha^2, \cdots \rangle$.

Proposition 9.2.3. *Let* $R \subseteq T$ *, the following are equivalent for* $\alpha \in T$ *:*

(1). The element α is integral over R,

(2). The module $R[\alpha]$ is a finitely generated R-module,

(3). There exists $S \supseteq R[\alpha]$ ring which is finitely generated R-module.

Proof. (1) \Longrightarrow (2) because $\alpha^n + r_1 \alpha^{n-1} + \cdots + r_1 = 0$, then $R[\alpha] = R\langle \alpha, \cdots, \alpha^{n-1} \rangle$. (2) \Longrightarrow (3): Take $S = R[\alpha]$.

(3) \Longrightarrow (1): Let $\phi = \alpha \operatorname{Id}_S : S \to S$ is a *R*-module endomorphism. Then *S* is finitely generated implies that $\exists r_1, \dots, r_n \in R$ such that $\phi^n + r_1 \phi^{n-1} + \dots + r_n \operatorname{Id} = 0$. Applying this to 1_S gives $\alpha^n + r_1 \alpha^{n-1} + \dots + r_m = 0$.

Corollary 9.2.4. We have $\alpha_1, \dots, \alpha_n$ integral over R if and only if $R[\alpha_1, \dots, \alpha_n]$ is a finitely generated R-module. Hence sums, difference, product of integral elements are integral over R.

Proof. (\Longrightarrow): Easy by induction on n ((1) \Longrightarrow (2)). (\Leftarrow): Already proved ((3) \Longrightarrow (1)).

Thus any element in $R[\alpha_1, \cdots, \alpha_n]$ is integral ((3) \Longrightarrow (1)).

Definition 9.2.5. Let $R \subseteq T$ be rings. The integral closure of R in T is $\overline{R}^T = \{\alpha \in T | \alpha \text{ integral over } R \}$.

Example 9.2.6. We have $\overline{\mathbb{Z}}^{\mathbb{Q}} = \mathbb{Z}$.

Definition 9.2.7. Let $R \subseteq T$, then

- If $\overline{R}^T = T$, then *T* is called **integral over** *R*.
- If $\overline{R}^T = R$, then *R* is called **integrally closed in** *T*.

Remark 9.2.8. The closure \overline{R}^T is subring of *T* (since sum, difference, product of integral are integral).

Lemma 9.2.9. Let $R \subseteq S \subseteq T$ be rings, if S is integral over R, and T is integral over S, then T is integral over R.

Proof. Let $\alpha \in T$, then $\exists s_1, \dots, s_n \in S$ such that $\alpha^n + s_1 \alpha^{n-1} + \dots + s_n = 0$. Hence $R[s_1, \dots, s_n, \alpha]$ is finitely generated $R[s_1, \dots, s_n]$ -module and $R[s_1, \dots, s_n]$ is finitely generated R-module. Therefore $R[s_1, \dots, s_n, \alpha]$ is finitely generated R-module. Therefore $R[s_1, \dots, s_n, \alpha]$ is finitely generated R-module. Then α is integral over R.

Corollary 9.2.10. *The closure* \overline{R}^T *is integrally closed in* T*.*

Proof. Apply lemma, $R \subseteq \overline{R}^T \subseteq \overline{\overline{R}^T}^T$. By lemma any element of $\overline{\overline{R}^T}^T$ is integral over R hence in \overline{R}^T . Thus $\overline{\overline{R}^T}^T = \overline{R}^T$.

Lemma 9.2.11. Let $R \subseteq T$ be rings, with T integral over R, then

- (1). for all $J \subseteq T$ ideal, T/J is integral over $(R + J)/J (\simeq R/(R \cap J))$.
- (2). For all $S \subseteq R$ multiplicative set, $S^{-1}T$ is integral over $S^{-1}R$.

Proof. Need to prove that

- (1). For all $\alpha \in T$, $\alpha + J$ is integral over (R + J)/J.
- (2). For all $\alpha \in T$, for all $s \in S$, $\frac{\alpha}{s}$ is integral over $S^{-1}R$.

Exercise.

Lemma 9.2.12 (Localization commutes with integral closure). Let $R \subseteq T$ be rings, and let $S \subseteq R$ multiplicative set, then $\overline{S^{-1}R}^{S^{-1}T} = S^{-1}(\overline{R}^T)$.

Proof. (\supseteq): By statement (2) in previous lemma (\overline{R}^T is integral over R implies that

 $S^{-1}\overline{R}^{T} \text{ is integral over } S^{-1}R).$ $(\subseteq): \text{ We have } \frac{t}{s} \in \overline{S^{-1}R}^{S^{-1}T} \Longrightarrow \exists r_{i} \in R, s_{i} \in R, (\frac{t}{s})^{n} + (\frac{r_{1}}{s_{1}})(\frac{t}{s})^{n-1} + \dots + (\frac{r_{n}}{s_{n}}) = 0.$ Then multiply by $(ss_{1}\cdots s_{n})^{n}$ implies that $(ts_{1}\cdots s_{n})^{n} + \dots = 0.$ Thus $ts_{1}\cdots s_{n}$ is integral over R. Hence $\frac{t}{s} = \frac{ts_1 \cdots s_n}{ss_1 \cdots s_n} \in S^{-1} \overline{R}^T$.

Definition 9.2.13. A domain *R* is called **integrally closed** if it is integrally closed in its field of fraction.

Example 9.2.14. We have

- $\overline{\mathbb{Z}}^{\mathbb{Q}} = \mathbb{Z}$ hence \mathbb{Z} is integrally closed.
- Any UFD is integrally closed (same proof as for ℤ).

Proposition 9.2.15 (Integrally closed is a local property). For a domain R, the following are equivalent:

- (1). The domain R is integrally closed.
- (2). The local ring R_P is integrally closed for all $P \subseteq R$ prime ideal.
- (3). The local ring R_P is integrally closed for all $P \subseteq R$ maximal ideal.

Proof. Let *K* be the field of fraction of *R*, for all *P* prime, we have $R \subseteq R_P \subseteq K = R_{\{0\}}$. Hence *K* is a field of fractions of R_P . Let $C = \overline{R}^K$. By previous lemma, $C_P = (\overline{R_P})^K$. Let

$$\phi: R \longrightarrow C,$$
$$r \longmapsto r,$$

be embedding map, and for $P \subseteq R$ prime, let

$$\phi_P : R_P \longrightarrow C_P,$$
$$\frac{r}{s} \longmapsto \frac{r}{s},$$

localization of ϕ at *P*, we have

 $(1) \Longleftrightarrow \phi \text{ surjective},$

(2) $\iff \phi_P \text{ surjective } \forall P \subseteq R \text{ prime},$

(3) $\iff \phi_P$ surjective $\forall P \subseteq R$ maximal.

The 3 statements are equivalent since "being surjective is a local property". $\hfill \Box$

9.3 Going Up/Down Theorems

Remark 9.3.1. Let $R \subseteq T$ be rings such that for all $J \subseteq T$ ideal, $J \cap R$ is ideal, and $\forall J \subseteq T$ prime ideal, $J \cap R$ prime (indeed $R \cap J$ is contraction of J for embedding map $R \hookrightarrow T$). We will show that if T integral over R, then any prime ideal of R is of this form.

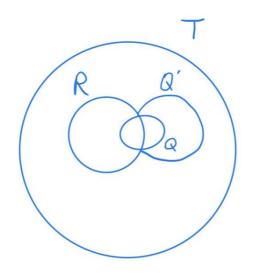
Lemma 9.3.2. Let $R \subseteq T$ be domains and T is integral over R, then T is a field if and only if R is a field.

Proof. Exercise.

Corollary 9.3.3. Let $R \subseteq T$ be a ring such that T is integral over R, let $Q \subseteq T$ be a maximal ideal of T, then Q is maximal in T if and only if $Q \cap R$ is maximal in R.

Proof. We have T/Q, $R/R \cap Q$ are domains (since $Q, Q \cap R$ are prime). By lemma, T/Q is integral over $(R + Q)/Q \simeq R/R \cap Q$. Hence Q is maximal if and only if T/Q is a field if and only if $R/R \cap Q$ is a field if and only if $R \cap Q$ is maximal. \Box

Corollary 9.3.4. Let $R \subseteq T$ be rings, T integral over R, let $Q \subseteq Q' \subseteq T$ be prime ideals. If $Q \cap R = Q' \cap R$ then Q = Q'.



Proof. Assume $Q \cap R = Q' \cap R$, then the ideal $P = Q \cap R$ is prime ideal of R. By lemma, T_P is integral over R_P (here $T_P = S^{-1}T, S = R \setminus P$). The localization of Q_P, Q'_P satisfy $Q_P \cap R_P = Q'_P \cap R_P = (Q \cap R)_P = P_P$ maximal ideal of R_P . By Corollary 9.3.3, Q_P, Q'_P are maximal ideals of T_P . Since $Q_P \subseteq Q'_P$, we get $Q_P = Q'_P$. Moreover, Q and Q' are prime and not intersecting $S = R \setminus P$. Hence they are contractions via localization at P. Hence $Q = Q_P^C = Q_P^{C'} = Q'$.

Theorem 9.3.5. Let $R \subseteq T$ be rings, T integral over R, for all $P \subseteq R$ prime ideal of R, there is $Q \subseteq T$ prime ideal of T such that $P = Q \cap R$.

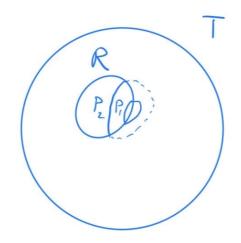
Proof. We have that T_P integral over R_P . Moreover, the diagram

$$\begin{array}{ccc} R & & \stackrel{\alpha}{\longrightarrow} & T \\ \phi & & & \downarrow \psi \\ R_P & \stackrel{\beta}{\longrightarrow} & T_P \end{array}$$

where α, β embedding map, ϕ, ψ localization maps is commutative ($r \mapsto \frac{r}{1} \in T_P$).

Let *M* be a maximal ideal of T_P , then $\beta^{-1}(M) = M \cap R_P$ is maximal ideal of R_P (by Corollary 9.3.3). Hence $\beta^{-1}(M) = P_P$ and thus $\phi^{-1}(\beta^{-1}(M)) = P$. Therefore $P = \alpha^{-1}(\psi^{-1}(M)) = R \cap \psi^{-1}(M)$ where the last term is prime ideal of *T*. \Box

Corollary 9.3.6 (Going Up Theorem). Let $R \subseteq T$ be rings, T integral over R, let $P_1 \subseteq P_2 \subseteq R$ be prime ideal, let Q_1 prime ideal of T, such that $P_1 = Q_1 \cap R$, then $\exists Q_2 \supseteq Q_1$, prime ideal of T such that $P_2 = Q_2 \cap R$.



Proof. By previous lemma, T/Q is integral over $R + Q_1/Q_1 \simeq R/P_1$, and P_2/P_1 is prime in R/P_1 . Hence by previous theorem, there is $\overline{Q_2} \subseteq T/Q_1$ such that $P_2/P_1 = \overline{Q_2} \cap R/P_1$ and $\overline{Q_2} = Q_2/Q_1$ for some $Q_2 \supseteq Q_1$ prime ideal of T. Hence $P_2/P_1 = (Q_2 \cap R)/P_1$. Therefore, $P_2 = Q_2 \cap R$.

Corollary 9.3.7. *The dimension* dim $R = \dim T$.

10

Dedekind Domains and Discrete Valuation Rings

10.1 Basic Definitions and Results

Recall:

- A **Dedekind domain** is a Noetherian domain of dimension 1 which is integrally closed.
- In Noetherian domain of dimension 1, any ideal $I \neq 0$ can be written uniquely as $I = \prod Q_i$ with Q_i primary with distinct radicals.

Goal: show that in Dedekind domain, $I \neq 0$ has a unique factorization $I = \prod P_i^{d_i}$ where P_i are prime ideals.

Motivations:

Definition 10.1.1. We say

- An **algebraic number field** is a finite algebraic extension *L* of Q.
- Its ring of integers is $\overline{\mathbb{Z}}^L$.

Example 10.1.2. Let $L = \mathbb{Q}[i]$ be an algebraic number field and then $\mathbb{Z}[i]$ is its ring of integers.

Theorem 10.1.3. The ring of integers $\overline{\mathbb{Z}}^{L}$ of any algebraic number field is a Dedekind domain.

Lemma 10.1.4. Let R be a domain integrally closed in its field of fraction K. If L is a finite separable extension of K, then there exists b_1, \dots, b_n basis of L over K such that $\overline{R}^L \subseteq \langle b_1, \dots, b_n \rangle$.

Proof. Skipped (field theory).

Proof of Theorem 10.1.3. To show Dedekind domain, we are to show

- it is Noetherian domain,
- it is dimension 1,
- it is integrally closed.

We see

- $\overline{\mathbb{Z}}^{L}$ is a domain since it is included in *L*, which is a field.
- Since $K = \mathbb{Q}$ has characteristic zero, any extension of \mathbb{Q} is separable.

Hence lemma gives $\overline{\mathbb{Z}}^L \subseteq \mathbb{Z}\langle b_1, \cdots, b_n \rangle$ is finitely generated \mathbb{Z} -module. Since \mathbb{Z} is PID, we have $\overline{\mathbb{Z}}^L$ is finitely generated \mathbb{Z} -module. Also since \mathbb{Z} is Noetherian, we have $\overline{\mathbb{Z}}^L$ is Noetherian (finitely generated algebraic over Noetherian). Hence we have

- $\overline{\mathbb{Z}}^L$ is integrally closed in its field of fraction *K* since $K \subseteq L$,
- dim(Z
 ^L) = dim(Z) = 1 since dimension of integral extension equals the dimension of the ring.

Hence the theorem is proved.

Definition 10.1.5. Let *K* be a field. A **discrete valuation** is $v : K^{\times} \longrightarrow \mathbb{Z}$ such that

- *v* is surjective,
- v(xy) = v(x) + v(y),
- $v(x+y) \ge \min(v(x), v(y)).$

(v is surjective group homomorphism $(K^{\times}, \times) \longrightarrow (\mathbb{Z}, +)$). We get $v(0) = +\infty$.

Example 10.1.6. Let $K = \mathbb{Q}$, given p prime number we define $v_p(q) = k$ if $q = p^k \frac{a}{b}$ where $p \nmid a, p \nmid b$.

Remark 10.1.7. We have $v(1) = 0, v(x^{-1}) = -v(x), v(-1) = -v(-1) = 0, v(-x) = v(x)$. We also have $K_v = \{x \in K | v(x) \ge 0\}$ is a subring of K.

Definition 10.1.8. The ring R is a **discrete valuation ring (d.v.r)** if $R = K_v$ for some field K and discrete valuation v.

Example 10.1.9. We have $\mathbb{Z}_{(p)} = \{\frac{a}{b} | p \nmid b\}$ is a d.v.r since $\mathbb{Z}_{(p)} = \mathbb{Q}_{v_p}$ with v_p defined as before.

Remark 10.1.10. We have the following facts:

- For any d.v.r K_v , $\forall x \in K$, either x or x^{-1} is in K_v .
- An element $x \in K_v$ is invertible if and only if v(x) = 0.
- If $0 \leq v(x) \leq v(y)$ then x|y in K_v (because $yx^{-1} \in K_v$).

Theorem 10.1.11. *Let R be a ring, then R is a local Dedekind domain if and only if R is a d.v.r. Moreover, the following are equivalent properties for a local Noetherian domain of dimension* 1*:*

- (1). The ring *R* is integrally closed (hence local Dedekind).
- (2). The maximal ideal $M \subseteq R$ is principal (generated by a single element).
- (3). Every ideal $I \neq 0$ is a power of the maximal ideal M.
- (4). There exists $p \in R$ such that every ideal is of the form (p^k) .
- (5). The ring R is a d.v.r.

Proof. (\Leftarrow): We see

- Let *R* be a d.v.r. Let $p \in R$, v(p) = 1. For $I \neq 0$ ideal, and let $k = \min_{x \in I}(v(x))$. Then there exists $x \in I$, $v(x) = k = v(p^k)$. This implies $p^k \in I$ (since $x|p^k$) and $I = (p^k)$ (since for all $y \in I$, $v(p^k) \leq v(y) \Longrightarrow p^k|y$). Given that the nonzero ideal are $(p) \supseteq (p^2) \supseteq (p^3) \supseteq \cdots$, it is clear that *R* is Noetherian, local of dimension 1 (unique nonzero prime ideal is (p)).
- Lastly *R* is integrally closed, let $\alpha \in K$ field of fractions of *R*. Suppose $\exists r_1, \dots, r_n \in R$ such that $\alpha^n + r_1 \alpha^{n-1} + \dots + r_n = 0$. If $\alpha \notin R$, then $\alpha^{-1} \in R$ (since *R* is d.v.r). Hence $\alpha = -r_1 r_2 \alpha^{-1} \dots r_n (\alpha^{-1})^{n-1} \in R$.

 (\Longrightarrow) : It suffices to show $(1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (4) \Longrightarrow (5)$ (we have already proved $(5) \Longrightarrow (1)$). We prove

 $(1) \Longrightarrow (2)$ and $(2) \Longrightarrow (3)$ are left as homework.

(3) \implies (4): We have $M^2 \subseteq M$ and $M^2 \neq M$ (because M = J Jacobson radical), hence there exists $p \in M \setminus M^2$. Then $\exists n, (p) = M^n$ implies that (p) = M and thus for all $k, M^k = (p^k)$.

 $(4) \Longrightarrow (5)$: Take M = (p) is the unique maximal ideal, hence (p) = J Jacobson radical, for all k, $(p^{k+1}) \neq (p^k)$ (because $J \cdot N = N$ implies N = 0). Hence for any $x \in R \setminus \{0\}, \exists ! k \ge 0, (x) = (p^k)$ and we define v(x) = k. We extend v to the field of fractions K of R by $v(\frac{a}{b}) = v(a) - v(b)$. It is easy to see that $R = K_v$ is a d.v.r. \Box

Theorem 10.1.12. *Let R be a Noetherian domain of dimension* 1*, the following are equivalent:*

- (a). *R* is integrally closed (hence Dedekind).
- *(b).* For all $P \subseteq R$ prime, R_P is a local Dedekind (equivalent to a d.v.r).
- (c). Every primary ideal is a power of prime ideal.
- (*d*). Every nonzero ideal has a unique factorization into prime ideals.

Lemma 10.1.13. Ideal P maximal implies that P^n primary for all n (homework).

Proof of Theorem 10.1.12. $(a) \implies (b)$: integrally closed is a local property.

 $(b) \implies (c)$: Let Q be primary ideal and let P = r(Q), then Q primary implies that $Q = Q^{ec}$ for $R \longrightarrow R_P$. Then R_P local Dedekind implies that $Q^e = Q_P$ is a power of the maximal P_P . Hence $Q = (P_P^k)^c = ((P^k)_P)^c = (P^k)^{ec} = P^k$ where P^k is primary as power of maximal.

 $(c) \implies (b)$: Let *P* be prime ideal, want to show R_P is local Dedekind by previous theorem, it suffices to show that any ideal of R_P is a power of P_P . [We skip the fact that *Q* has RPD and localizations].

 $(c) \implies (d)$: Existence: $I = \prod Q_i$ with Q_i primary (already shown) implies that $I = \prod P_i^{d_i}$ by (c). Uniqueness: We have $\{Q_1, \dots, Q_n\}$ is unique (already shown). Hence we see $P^d = P'^{d'}$ which implies $r(P^d) = r(P'^{d'})$ hence P = P'. Further, $P^d = P^{d'}$ implies d = d' because $P^k = P^{k+1}$ implies $P_P^k = P_P^{k+1}$ implies $P_P = 0$ by Nakayama lemma, hence impossible (since it is a domain).

 $(d) \Longrightarrow (c)$: Let Q be primary, $Q = \prod P_i^{d_i}$ implies that $r(Q) = \bigcap r(P_i^{d_i}) = \bigcap P_i$. Also r(Q) prime hence $r(Q) = \bigcap P_i$ hence $r(Q) = P_i$ for some i. This shows $Q = P_i^{d_i}$.

Part III Homological Algebra

11

Motivational Examples

11.1 Chains of Modules

Let *R* be a ring, $\mathcal{R} - \mathcal{M}od$ = category of *R*-modules (left *R*-modules).

Definition 11.1.1. A chain complex (in $\mathscr{R} - \mathscr{Mod}$) is $C_* = (C_n)_{n \ge 0}$ and $d_* = (d_n)_{n>0}$ where C_n is R-module, $d_n : C_n \to C_{n-1}$ is R-module homomorphism such that $d_n \circ d_{n+1} = 0$

$$\cdots \longrightarrow C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0.$$

Example 11.1.2. Take C_* associated to the simplicial complex such that $C_n = \mathbb{Z}\langle n - cell \rangle$, d_n : "boundary maps".

Definition 11.1.3. Let (C_*, d_*) be chain complex (in $\mathcal{R} - \mathcal{Mod}$), we denote that $Z_n(C_*) = \ker(d_n) \subseteq C_n$, namely the "cycles" and $B_n(C_*) = \operatorname{Im}(d_{n+1}) \subseteq C_n$ "boundaries". Since $d_n d_{n+1} = 0$ and $B_n \subseteq Z_n$ and we can take quotient $H_n(C_*) = Z_n/B_n$, the *n*-th homology group of C_* .

Example 11.1.4. Consider the torus with $H_1(C_*) = \mathbb{Z}$ cycles/ \mathbb{Z} contractible cycles.

Remark 11.1.5. Chain C_* is exact if and only if $H_n(C_*) = 0 \forall n$. Hence $H_n(C_*)$ is the measure of non-exactness of the *n*-th step.

Definition 11.1.6. Let C_*, C'_* be chain complexes. A chain map $f_* : C_* \longrightarrow C'_*$ is $f_* = (f_n)_n \ge 0$, and $f_n : C_n \longrightarrow C'_n$ module homomorphism such that "every squares commute" in

and df = fd'.

Example 11.1.7. If C_*, C'_* are associated with some simplicial complexes... To be filled.

Remark 11.1.8. If $f_* : C_* \longrightarrow C'_*$ is a chain map, then for all n, f_n sends cycles to cycles (boundaries to boundaries).

In $f(Z_n(C_*)) \subseteq Z_n(C'_*)$ because $df(Z_n(C_*)) = fd(Z_n(C_*)) = f0 = 0$. Moreover, $f_n(B_n(C_n)) \subseteq B_n(C'_*)$ because $f(d_{C_{n+1}}) = df(C_{n+1}) \subseteq \text{Im}d$.

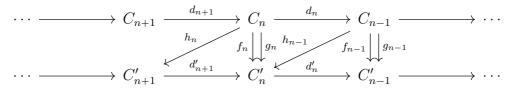
Definition 11.1.9. Let $f_* : C_* \longrightarrow C'_*$ be a chain map, by preceding remark we can define

$$f_n : H_n(C_*) \longrightarrow H_n(C'_*),$$
$$\alpha + B_n(C_*) \longmapsto f_n(\alpha) + B_n(C'_*)$$

where $\alpha \in Z_n(C_*)$. This is a well-defined homomorphism by preceding remark (sends boundaries to boundaries).

Remark 11.1.10. Composition of chain maps are chain maps, that is, $\overline{f_n} \circ \overline{g_n} = \overline{f_n \circ g_n}$ (functoriality).

Definition 11.1.11 (Chain Homotopy). Let $f_*, g_* : C_* \longrightarrow C'_*$ be chain maps. We say that f_*, g_* are **homotopy equivalent** if there exists $h = (h_n)_{n \ge 0}, h_n : C_n \to C'_{n+1}$ *R*-module homomorphism such that for all $n, f_n - g_n = h_{n-1}d_n + d'_{n+1}h_n$. It can be viewed as



where we have notation $f_* \simeq g_*$.

Example 11.1.12. To be filled.

Lemma 11.1.13. If chain maps $f_*, g_* : C_* \longrightarrow C'_*$ are homotopy equivalent, then $\overline{f_n} = \overline{g_n} : H_n(C_*) \longrightarrow H_n(C'_*)$.

Proof. Suppose $f_* \underset{h}{\simeq} g_*$, for all $\alpha \in Z_n(C_*)$, $f_n(\alpha) - g_n(\alpha) = dh(\alpha) + hd(\alpha) = dh(\alpha) \in B_n(C'_*)$. Hence $\overline{f_n}(\alpha) = f_n(\alpha) + B_n(C'_*) = g_n(\alpha) + B_n(C'_*) = \overline{g_n}(\alpha)$.

Definition 11.1.14. Two chain complex C_*, C'_* are **homotopy equivalent** if there is chain maps $f_* : C_* \longrightarrow C'_*$ and $g_* : C'_* \longrightarrow C_*$ such that $g_* \circ f_* \simeq \operatorname{Id}_{C_*}, f_* \circ g_* \simeq \operatorname{Id}_{C'_*}$.

Corollary 11.1.15. If C_*, C'_* are homotopy equivalent then for all n, we have $H_n(C_*) \simeq H_n(C'_*)$ isomorphism of R-module.

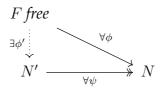
Proof. By lemma $\overline{g_n} \circ \overline{f_n} = \operatorname{Id}_{H_n(C_*)}$ and $\overline{f_n} \circ \overline{g_n} = \operatorname{Id}_{H_n(C'_*)}$. Hence $\overline{f_n}, \overline{g_n}$ are isomorphism.

Definition 11.1.16. We have the following definitions:

- A resolution for a R-module M is an exact sequence of the form $\cdots \longrightarrow C_2 \longrightarrow C_1 \longrightarrow C_0 \longrightarrow M \longrightarrow 0$. Abbreviated by $C_* \longrightarrow M \longrightarrow 0$.
- A free resolution is a resolution such that for all n, C_n is free R-module: $(C_* \longrightarrow M \longrightarrow 0).$

Lemma 11.1.17. *We have the following statements:*

- (a). For any R-module N, there exists free R-module F and $\phi : F \longrightarrow N$ surjective R-module homomorphism. That is, $\exists free \ F \xrightarrow[]{\exists \phi} \forall N$.
- (b). For any F free, for any $\phi : F \to N$, for any $\psi : N' \twoheadrightarrow N$ surjective homomorphism, there exists ϕ' such that $\psi \circ \phi' = \phi$. That is, the diagram

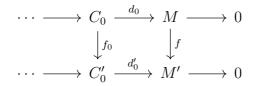


commutes.

Proof. Exercise. Easy consequence of the fact that if *F* is free with basis $\{b_i\}$, then for any *M* module, for all $\{x_i\} \subseteq M$, there is $\phi : F \longrightarrow M$ such that $\phi(b_i) = x_i$. \Box

Theorem 11.1.18 (Fundamental Theorem of Homological Algebra). We have

- for all M, R-module, there is free resolution $C_* \longrightarrow M \longrightarrow 0$, and
- for all $f: M \to M'$ homomorphism, for any free resolution, $C_* \longrightarrow M \longrightarrow 0$ and $C'_* \longrightarrow M' \longrightarrow 0$. There is $f_*: C_* \longrightarrow C'_*$ chain map "lifting f", the diagram

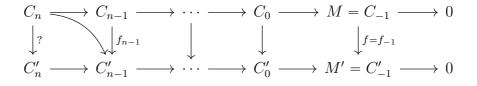


commutes with $d'_0 f_0 = f d_0$. Moreover, we have

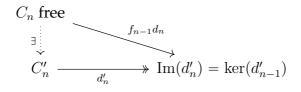
- the free resolution C_* of M is unique up to homotopy, and
- the lifting f_* of f is unique up to homotopy.

Proof. We see

- Existence of free resolution: applying (a) to N = M gives C_0, d_0 that $C_0 \xrightarrow{d_0} M \to 0$. Applying (a) to $N = \ker(d_0)$ gives C_1, d_1, \cdots , etc.
- Existence of chain map lifting *f* :



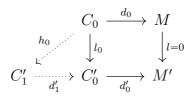
for all $n \ge 0$, we need to find f_n from f_{n-1} (such that d'f = fd). Observe that $f_{n-1} \circ d_n(C_n) \subseteq \ker(d'_{n-1})$ since $d'_{n-1} \circ f_{n-1} \circ d_n = d'_{n-2} \circ d'_{n-1} \circ f_n = 0$ since $d'_{n-2} \circ d'_{n-1} = 0$. So we have



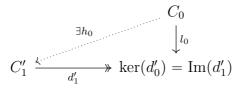
By (b), there is $f_n : C_n \longrightarrow C'_n$ such that $d'_n f_n = f_{n-1}d_n$.

Then we see

• Uniqueness of f_* up to homotopy. Suppose f_*, g_* both lift $f : M \to M'$. Then $l_n = f_n - g_n$ lifts $0 : M \to M'$. We want to find $(h_n), h_n : C_n \to C'_{n+1}$ such that l = hd + d'h. How about h_0 ? We have the diagram

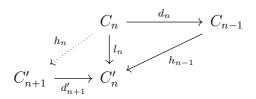


and want $l_0 = d'_1 h_0$. Since $d'_0 l_0 = 0 d_0 = 0$, we have



commutes. By (b), there is h_0 such that $l_0 = d'_1 \circ h_0$.

For n > 0, we want h_n such that $d'_{n+1}h_n = l_n - h_{n-1}d_n$ such that



commutes. We have also

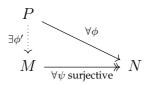
(Indeed, $d'_n(l_n - h_{n-1}d_n) = l_{n-1}d_n - d'_nh_{n-1}d_n = (l_{n-1} - d'_nh_{n-1})d_n = h_{n-2}d_{n-1}d_n = 0$). By (b), there is h_n such that $d'_{n+1}h_n = l_n - h_{n-1}d_n$.

• Uniqueness of free resolution up to homotopy: let $C_* \to M \to 0, C'_* \to M \to 0$ 0 be free resolution of M. There is $f_* : C_* \to C'_*$ lifted $\mathrm{Id} : M \to M$, and $g_* : C'_* \to C_*$ lifted $\mathrm{Id} : M \to M$. Then $g_*f_* : C_* \to C_*$ lifts Id_M implies that $g_*f_* \simeq \mathrm{Id}_{C_*}$ and $f_*g_* : C'_* \to C'_*$ lifts Id_M implies that $f_*g_* \simeq \mathrm{Id}_{C_*}$.

Generalizations? Projective modules.

11.2 Projective Modules

Definition 11.2.1. A *R*-module *P* is **projective** if it satisfies



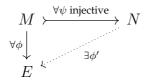
commuting (prop (b) of free module).

Remark 11.2.2. We have

• By lemma 11.1.17 (b), any free module is projective. By (a), for any $N \in \mathcal{R} - \mathcal{Mod}$, there is *P* projective and $\phi : P \twoheadrightarrow N$ surjective. " $\mathcal{R} - \mathcal{Mod}$ has enough projective." This implies that for any $M \in \mathcal{R} - \mathcal{Mod}$, there exists $P^* \to M \to 0$ projective resolution of *M*.

- The theorem remains true if we replace "free" by "projective" everywhere. (existence of projective resolution by above, existence of *f**, uniqueness up to homotopy only use (*b*) = definition of projective).
- Reversing arrows.

Definition 11.2.3. A *R*-module *E* is **injective** if it satisfies



commuting.

Definition 11.2.4. An **injective coresolution** for a *R*-module *M* is

$$0 \longrightarrow M \xrightarrow{d_0} E_0 \xrightarrow{d_1} E_1 \longrightarrow E_2 \longrightarrow \cdots$$

exact sequence with E_n injective module.

Question: Do they exist? Existence amounts to showing for any *N*, there exists *E* injective and $N \rightarrow E$ injective homomorphism.

Exercise: show that when they exist, injective coresolution are unique up to homotopy.

More general categories: How to define "exact sequence" in a category? How about surjective, injective, kernel, images $(H_n = Z_n/B_n)$? This leads us to Abelian categories

Additive Categories

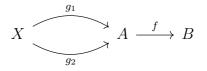
12.1 Category Notations

Let *C* be a category, then

- $A \in C$ means A is an object of C.
- For objects $A, B \in C$, we denote C(A, B), which is the set $Moz_C(A, B)$ of C-morphisms from A to B.
- We denote *Set* the category of sets.
- We denote $\mathcal{R} \mathcal{M}od$ category of left R-module, and $\mathcal{M}od \mathcal{R}$ category of right R-module.
- We denote $\mathcal{A}b = \mathbb{Z} \mathcal{M}od$ category of Abelian group.

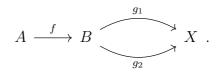
Definition 12.1.1. We have

• $f \in C(A, B)$ is a **monomorphism** if for all $X \in C, \forall g_1 \neq g_2 \in C(X, A)$, we have $fg_1 \neq fg_2$, that is



(i.e., $fg_1 = fg_2$ implies $g_1 = g_2$ can simplify f on the left). We write $f : A \rightarrow B$ to indicate f is a monomorphism.

• $f \in C(A, B)$ is an **epimorphism** if for any $X \in C, \forall g_1 \neq g_2 \in C(B, X), g_1 f \neq g_2 f$. We write $f : A \rightarrow B$, that is,



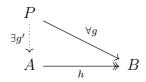
Example 12.1.2. In *Set* and in $\mathcal{R} - \mathcal{Mod}$, *f* is monomorphism if and only if *f* is injective. Also *f* is epimorphism if and only if *f* is surjective.

Notation: For $f \in C(A, B)$, we denote $f_{\#} : g \mapsto fg$ where g is in C(X, A) and fg in C(X, B). Similarly we denote $_{\#}f : g \mapsto gf$ where the first g is in C(B, X) and gf in C(A, X).

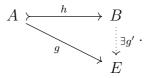
Remark 12.1.3. We have f is monomorphism if and only if $f_{\#}$ is injective. And f is epimorphism if and only if $_{\#}f$ injective.

Remark 12.1.4. We have *f* is isomorphism implies that *f* is monomorphism and epimorphism (converse not always true).

Definition 12.1.5. An object $P \in C$ is **projective** if it satisfies



and for all $A, B \in C, \forall g : P \to B, \forall h : A \twoheadrightarrow B$, there is $g' : P \to A$ such that hg' = g. Similarly, an object $E \in C$ is **injective** if it satisfies



12.2 Additive Categories

Definition 12.2.1. An **additive category** is a category *C* such that for any $A, B \in C$, C(A, B) is an additive group and we have the following:

- (1). Operation is biadditive $(f_1 + f_2)g = f_1g + f_2g$ and $g(f_1 + f_2) = gf_1 + gf_2$.
- (2). The category C has a zero object 0_C .

(3). Any finite tuple of objects A_1, \dots, A_n have a product. That is, $\prod_{i=1}^n A_i$ and a coproduct $\prod_{i=1}^n A_i$.

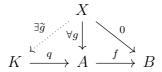
Lemma 12.2.2. In *C* additive category, we have $\prod_{i=1}^{n} A_i \simeq \coprod_{i=1}^{n} A_i$.

Example 12.2.3. Some examples of additive category:

- $\mathcal{R} Mod$, $Mod \mathcal{R}$.
- $\mathcal{R} mod$, $mod \mathcal{R}$, the category of finitely generated R-module.

Definition 12.2.4. Let $f \in C(A, B)$, a **kernel** of f is $K \in C$ and $q \in C(K, A)$ such that

- (1). we have fq = 0, and
- (2). for any $X \in C$, for any $g \in C(X, A)$ such that fg = 0, there exists \tilde{g} such that $g = q\tilde{g}$. We have the diagram



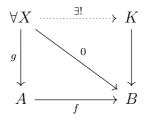
commutes.

Example 12.2.5. In \mathcal{R} – $\mathcal{M}od$, and f as R-module homomorphism, let $K = \{a \in A | f(a) = 0\}$, and

$$q: K \longrightarrow A,$$
$$a \longmapsto a.$$

Then (K, q) is the kernel of f in $\mathcal{R} - Mod$.

Lemma 12.2.6. When f has a kernel, they are unique up to C-isomorphism, that is, we have K, q kernel if the diagram



commutes.

Remark 12.2.7. Let *C* be additive category and let $f \in C(A, B)$, for any $X \in C$, the map

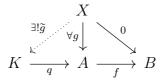
$$f_{\#}: \mathcal{C}(X, A) \longrightarrow \mathcal{C}(X, B),$$
$$g \longmapsto fg,$$

is homomorphism of additive group. Its kernel (in group sense) is $ker(f_{\#}) = \{g|fg = 0\}$.

Lemma 12.2.8. Let C be additive category and $f \in C(A, B)$, then (K, q) is the kernel of f if and only if for any $X \in C$, we have

- $\operatorname{Im}(q_{\#}) = \ker(f_{\#})(\exists \widetilde{g}),$
- $q_{\#}$ injective $(\exists!\widetilde{g})$.

That is, we have the diagram



commutes if and only if for any $X \in C$, we have $0 \longrightarrow C(X, K) \xrightarrow{q_{\#}} C(X, A) \xrightarrow{f_{\#}} C(X, B)$ is exact sequence of additive group.

Corollary 12.2.9. A C-morphism f is a monomorphism if and only if (0, 0) is the kernel of f.

Proof. We have f monomorphism if and only if $f_{\#}$ is injective if and only if $\ker(f_{\#}) = 0$.

 (\Leftarrow) : if (0,0) is a kernel of f, then ker $(f_{\#}) = \text{Im}(0_{\#}) = 0$, hence f is monomorphism.

 (\Longrightarrow) : If *f* is monomorphism, then ker $(f_{\#}) = 0$ implies that $q = 0_{\mathcal{C}(0,A)}$ satisfies

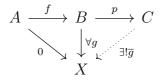
- $\operatorname{Im}(q_{\#}) = 0 = \ker(f_{\#}),$
- $q_{\#}$ is injective (since $C(X, 0) = \{0\}$).

Hence the corollary.

Remark 12.2.10. If (K, q) is kernel of f then q is monomorphism (since $q_{\#}$ is injective).

Definition 12.2.11. A cokernel of $f \in C(A, B)$ is $(C, p), C \in C, p \in C(B, C)$ such that

- (1). pf = 0,
- (2). for any $X \in C$, $\forall g \in C(B, X)$ such that gf = 0, there exists unique $\overline{g} : C \to X$ such that $g = p\overline{g}$, that is, the diagram



commutes.

Remark 12.2.12. In $\mathcal{R} - \mathcal{M}od$, let $f \in \text{Hom}(A, B)$, let $C = B/\text{Im}(f), p : B \to C$ quotient map, then (C, p) is a cokernel of f in $\mathcal{R} - \mathcal{M}od$. Indeed, if gf = 0, it means that $\text{Im}(f) \subseteq \text{ker}(g)$, and we can define

$$\overline{g}: C \longrightarrow X,$$
$$b + \operatorname{Im}(f) \longmapsto g(b),$$

and it is unique choice.

Lemma 12.2.13. Cokernels are unique up to C-isomorphism. Further, we have that (C, p) cokernel of f if and only if we have both

- $\ker(\#f) = \operatorname{Im}(\#p)$, and
- *#p* is injective

are satisfied, if and only if $\forall X \in C$, we have $0 \to C(C, X) \xrightarrow{\#^p} C(B, X) \xrightarrow{\#^f} C(A, X)$ is exact (recall that $_{\#}p : g \mapsto gp$).

Remark 12.2.14. If (C, p) is a cokernel then #p is epimorphism.

12.3 Exact Sequences, Exact Functors

Definition 12.3.1. Let *C* be additive category, a **left exact sequence** in *C* is $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C$ with (A, f) is kernel of *g*.

Similarly, a **right exact sequence** in *C* is $A \xrightarrow{f} B \xrightarrow{g} C \to 0$ with (C, g) is cokernel of *g*.

Further, a **short exact sequence** in *C* is $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$, with (A, f) is kernel of *g* and (C, g) cokernel of *f*.

Remark 12.3.2. Match the classical definitions in $\mathcal{R} - Mod$.

Definition 12.3.3. Let \mathcal{C}, \mathcal{D} be additive categories, a covariant or contravariant functor $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ is **left exact** if $\mathcal{F}(shortexact)$ is left exact.

Similarly, a covariant or contravariant functor $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ is **right exact** if $\mathcal{F}(shortexact)$ is right exact.

Further, we say a covariant or contravariant functor $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ is **exact** if $\mathcal{F}(shortexact)$ is short exact.

Explicitly, functor \mathcal{F} covariant left exact if $0 \to A \to B \to C \to 0$ exact implies that $0 \to \mathcal{F}A \to \mathcal{F}B \to \mathcal{F}C$ exact. Functor \mathcal{F} contravariant left exact if $0 \to A \to B \to C \to 0$ exact implies that $0 \to \mathcal{F}C \to \mathcal{F}B \to \mathcal{F}A$ exact.

Definition 12.3.4. Let C be additive category and let $X \in C$, we define

• Hom_C(*X*, -) to be the covariant functor $C \rightarrow \mathcal{A}b$ defined by

$$A \longmapsto \mathcal{C}(X, A),$$

 $f \in \mathcal{C}(A, B) \longmapsto f_{\#} : \mathcal{C}(X, A) \to \mathcal{C}(X, B).$

• Hom_C(-, X) to be the contravariant functor $C \to \mathcal{A} \mathcal{B}$ defined by

$$A\longmapsto \mathcal{C}(A,X),$$
$$f\longmapsto_{\#} f.$$

Remark 12.3.5. By lemmas about kernel, cokernel, we use that $Hom_{\mathcal{C}}(-, X)$ and $Hom_{\mathcal{C}}(X, -)$ are left exact.

Proposition 12.3.6. We have

- *if* $X \in C$ *is injective, then* Hom_C(-, X) *exact.*
- We have $X \in C$ is projective implies that $Hom_{\mathcal{C}}(X, -)$ exact.

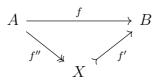
Proof. Homework.

Abelian Categories, Chains, and Homology

13.1 Abelian Categories

Definition 13.1.1. An additive category C is abelian if

- (a). Every *C*-morphism has a kernel and a cokernel.
- (b). If $f \in C(A, B)$ is monomorphism and $g \in C(B, C)$ is epimorphism, then (A, f) is a kernel of g if and only if (C, g) is cokernel of f (in this case $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is exact).
- (c). Every C-morphism f can be factored as f = f'f'' with f'' epimorphism and f' monomorphism, that is, we have the diagram



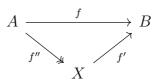
commutes.

Lemma 13.1.2. Let C abelian category, let $f \in C(A, B)$, suppose f = f'f'' where f' monomorphism and f'' epimorphism, then

- (a). We have (K,q) is kernel of f if and only if (K,q) is kernel of f''. In this case $0 \to K \xrightarrow{q} A \xrightarrow{f''} X \to 0$ exact.
- (b). We have (C, p) is cokernel of f if and only of (C, p) cokernel of f'. In this case $0 \to X \xrightarrow{f'} B \xrightarrow{p} C \to 0$ is exact.

Proof of Part (a). Since f' monomorphism, we have f''g = 0 if and only if fg = 0. Also (K,q) kernel of f if and only if $(fg = 0 \implies \exists! \tilde{g}, g = q\tilde{g})$ if and only if $(f''g = 0 \implies \exists! \tilde{g}, g = q\tilde{g})$ if and only if (K,q) kernel of f''.

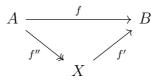
Definition 13.1.3. Let C abelian category and let $f \in C(A, B)$. If



commutes, then we call *X* an **image** of *f* and write X = Im(f).

Lemma 13.1.4. Let C be abelian category, the image Im(f) is unique up to C-isomorphism. Moreover, $\text{Im}(f) \simeq \text{coker}(\text{ker}(f)) \simeq \text{ker}(\text{coker}(f))$.

Proof. Suppose



commutes, we need to show $X = \operatorname{coker}(\ker(f))$. Let (K,q) be a kernel of f, then $0 \to K \xrightarrow{q} A \xrightarrow{f'} X \to 0$ is exact, which implies that $X = \operatorname{coker}(q) = \operatorname{coker}(\ker(f))$. Same for other formula.

13.2 Chains

Definition 13.2.1. Let C abelian category, a C-chain is $C_* = (C_n)_{n \ge 0}, d_* = (d_n)_{n > 0}$ where $d_n \in C(C_n, C_{n-1}), d_{n+1}d_n = 0$. A morphism of C-chains from C_* to C'_* is $f_* = (f_n)_{n \ge 0}$ and $f_n \in C(C_n, C'_n)$ such that $f_{n-1}d_n = d'_n f_n$.

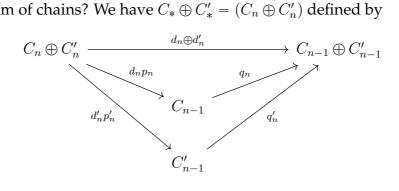
Remark 13.2.2. We have C-chains and their morphisms form a category denoted C-*chain*.

Proposition 13.2.3. We have that C additive category then C - chain is additive category. Similarly, C abelian category implies C - chain abelian category.

Proof. We have

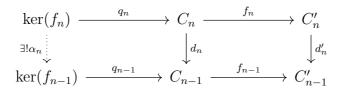
• $f_* + g_* = (f_n + g_n)$, and

• Direct sum of chains? We have $C_* \oplus C'_* = (C_n \oplus C'_n)$ defined by



component wise and commutes. Exercise: Show that this is a direct sum in C-chain.

• Kernels? Let $f_* : C_* \to C'_*$, we have

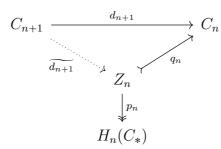


commutes and $(\ker(f_n), (\alpha_n))$ is kernel of f_* .

Cokernels, factorization, etc...

Hence the result.

Definition 13.2.4 (Homology). Let C be an abelian category, let C_*, d_* be a C – *chain*, let (Z_n, q_n) be kernel of d_n , then (since $d_n d_{n+1} = 0$), there exists unique d_{n+1} such that



commutes. We define the homology $H_n(C_*) = \operatorname{coker}(\widetilde{d_{n+1}})$.

Example 13.2.5. In $\mathcal{R} - \mathcal{M}od$, we have

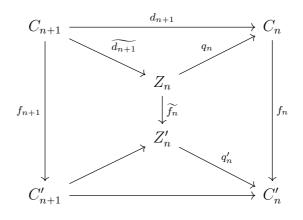
$$\widetilde{d_{n+1}} : C_{n+1} \longrightarrow Z_n = \ker(d_n)$$
$$x \longmapsto d_{n+1}(x).$$
$$\ker(d_n) / \operatorname{Im}(d_{n-1})$$

Then $H_n = \operatorname{coker}(\widetilde{d_{n+1}}) = \operatorname{ker}(d_n)/\operatorname{Im}(d_{n+1}).$

Lemma 13.2.6. We have $H_n(C_*)$ unique up to isomorphism.

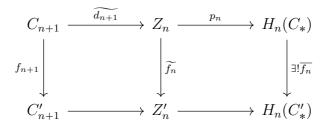
Definition 13.2.7. Let $f_* : C_* \to C'_*$ be morphism of $\mathcal{C} - chain$, then we have

• there exists unique \tilde{f}_n such that



commutes by definition of (Z'_n, q'_n) the kernel of d'_n .

• There exists $\overline{f_n}$ such that



commutes. We define $H_n(f_*) = \overline{f_n}$.

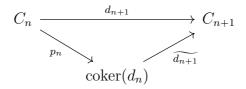
Lemma 13.2.8. For any n, we have H_n is a functor from C - chain to C such that $[H_n(f_*g_*) = H_n(f_*)H_n(g_*), H_n(\mathrm{Id}_*) = \mathrm{Id}]$ which is additive, that is, $H_n(f_* + g_*) = H_n(f_*) + H_n(g_*)$.

13.3 Dually, Cochain, etc

Definition 13.3.1. We define

- A C cochain is $C_0 \xrightarrow{d_1} C_1 \xrightarrow{d_2} C_2 \longrightarrow \cdots$ such that $d^2 = 0$.
- A morphism of C *cochain* is (f_n) such that fd = d'f.

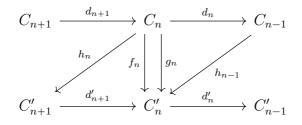
• For (C_*, d_*) cochain, there exists $\widetilde{d_{n+1}}$ such that



commutes. We say the **cohomology** $H^n(C_*) = \ker(d_{n+1})$.

Example 13.3.2. In \mathscr{R} – $\mathscr{M}od$, we have $\operatorname{coker}(d_n) = C_n/\operatorname{Im}(d_n)$. Here $\widetilde{d_{n+1}} : x + \operatorname{Im}(d_n) \to d_{n+1}(x)$. Then $H^n(C_*) = \operatorname{ker}(\widetilde{d_{n+1}}) = \operatorname{ker}(d_{n+1})/\operatorname{Im}(d_n)$.

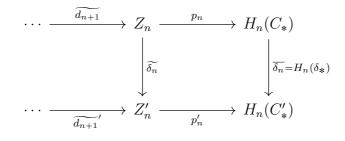
Definition 13.3.3 (Homotopy). We say chain morphisms $f_*, g_* : C_* \to C'_*$ are **homotopy equivalent** if there exists $(h_n)_{n\geq 0}$ in $C(C_n, C'_{n+1})$ such that $f_n - g_n = h_{n-1}d_n + d'_{n+1}h_n$. That is, we have



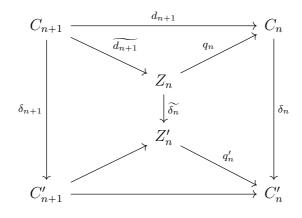
commutes. We denote $f_* \simeq g_*$.

Lemma 13.3.4. If $f_* \simeq g_*$ then $H_n(f_*) = H_n(g_*)$.

Proof. We have H_n is additive, hence we have $H_n(f_*) - H_n(g_*) = H_n(\delta_n)$ where $\delta_n = h_{n-1}d_n + d'_{n+1}h_n$. Want to show $H_n(\delta_n) = 0$. We have the diagram



and it suffices to show $p'_n \widetilde{\delta_n} = 0$. From the diagram



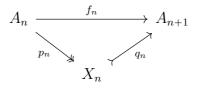
we have $q'_n \widetilde{\delta_n} = \delta_n q_n = (f_{n-1}d_n + d'_{n+1}h_n)q_n = d'_{n+1}h_nq_n = q'_n \widetilde{d'_{n+1}}h_nq_n$. Since q'_n is monomorphism, we have that $\widetilde{\delta_n} = \widetilde{d_{n+1}}h_nq_n$. Hence $p'_n\widetilde{\delta_n} = p'_n\widetilde{d_{n+1}}h_nq_n = 0$ since $p'_n\widetilde{d_{n+1}} = 0$.

Corollary 13.3.5. If C_*, C'_* are homotopy equivalent C - chain (that is, there exists $f_*: C_* \to C'_*, g_*: C'_* \to C_*$ such that $f_*g_* = \text{Id}, g_*f_* = \text{Id}$), then $H_n(C_*) \simeq H_n(C'_*)$ in C.

14 Derived Functors

14.1 Projective Resolutions, Injective Coresolutions

Definition 14.1.1. Let *C* be abelian category, a sequence of *C*-morphism $(f_n)_{a \le n \le b}$ is **exact** if there exists p_n monomorphism, q_n epimorphism such that $f_n = q_n p_n$, and we have the diagram



commutes and

 $0 \longrightarrow X_n \xrightarrow{q_n} A_{n+1} \xrightarrow{p_{n+1}} X_{n+1} \longrightarrow 0$

short exact.

Remark 14.1.2. The sequence (f_n) exact if $Im(f_n) = ker(f_{n+1})$ for any $a \le n \le b$, where $Im(f_n) = (X_n, p_n)$ by abuse of notation.

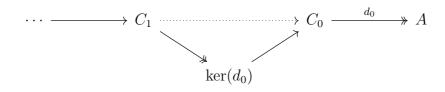
Definition 14.1.3. A projective resolution of $A \in C$ is C_*, d_* such that

 $\cdots \longrightarrow C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} A \longrightarrow 0$

exact and C_n projective for any n.

Definition 14.1.4. We say that *C* has "**enough projective**" if for any $X \in C$, there is $P \in C$ projective and $f : P \twoheadrightarrow X$ epimorphism.

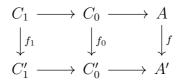
Lemma 14.1.5. *If C has enough projective then any object has a projective resolution.*



etc...

Proposition 14.1.6. We have

If C_{*} → A, C'_{*} → A' are projective resolution, then any f ∈ C(A, A') can be lifted to a chain map f_{*} : C_{*} → C'_{*} such that



commutes.

• Projective resolution are unique up to homotopy.

Proof. "Same" as in $\mathcal{R} - \mathcal{M}od$.

Then we define things dually:

Definition 14.1.7. An injective coresolution for $A \in C$ is

 $0 \longrightarrow A \xrightarrow{d_0} C_0 \xrightarrow{d_1} C_1 \longrightarrow \cdots$

exact with C_i injective.

Definition 14.1.8. We say *C* has "**enough injective**" if for any $X \in C$, we have $X \rightarrow E$ injective object.

Theorem 14.1.9. If C has enough injective, then any object has a injective coresolution and it is unique up to homotopy. Moreover, any C-morphism can be lifted to a cochain map between the injective coresolutions (lift is unique up to homotopy).

Definition 14.1.10. Let $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ be additive functor between abelian categories, \mathcal{F} either left or right exact. If \mathcal{F} is right (resp. left) exact we define the **left (resp.**

Derivative		
\mathcal{F}	covariant	contravariant
right exact	$L^n \mathcal{F}(A) = H_n(\mathcal{F}P_*)$, and $P_* \to A$ projective resolutions of A .	$L^n \mathcal{F}(A) = H^n (\mathcal{F}E_*)$, and
	$P_* \rightarrow A$ projective resolu-	$A \rightarrow E_*$ injective coresolu-
	tions of A.	tions of A.
left exact	$R^n \mathcal{F}(A) = H^n (\mathcal{F}E_*)$, and	$R^n \mathcal{F}(A) = H_n(\mathcal{F}P_*), \text{ and }$
	$R^n \mathcal{F}(A) = H^n(\mathcal{F}E_*)$, and $A \to E_*$ injective coresolu-	$P_* \rightarrow A$ projective resolu-
	tions of A.	tions of A.

right) derivative $L^n \mathcal{F}(\text{resp. } R^n \mathcal{F}) : \mathcal{C} \to \mathcal{D}$ as follows

More precisely, for *F* covariant right exact

- for any $A \in \mathcal{C}$, we have $L^n(\mathcal{F}(A)) = H_n(FP_*)$ where $\cdots \xrightarrow{dz} P_1 \xrightarrow{d_1} P_0 \longrightarrow A \longrightarrow 0$ is projective resolution, and FP_* is the \mathcal{D} -chain $\cdots \xrightarrow{\mathcal{G}dz} \mathcal{F}P_1 \xrightarrow{\mathcal{G}d_1} \mathcal{F}P_0$.
- For any $f \in C(A, B)$, we have $L^n(\mathcal{F}(f)) = H_n(\mathcal{F}f_*)$ where f_* is a lift of f between projective resolution $P_* \to A$ and $P'_* \to B$ and $\mathcal{F}(f_*) = (\mathcal{F}f_n)_{n \ge 0}$ is the corresponding \mathcal{D} -chain morphism between $\mathcal{F}P_*$ and $\mathcal{F}P'_*$.

Remark 14.1.11. Derivatives are only defined if *C* has enough injective or projective (depending on the case).

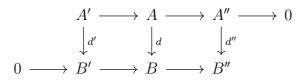
Lemma 14.1.12. Derivatives are well-defined up to \mathcal{D} -isomorphism and $L^0\mathcal{F} = \mathcal{F}$ for \mathcal{F} right exact, and $R^0\mathcal{F} = \mathcal{F}$ for \mathcal{F} left exact.

Proof. For \mathcal{F} covariant right exact,

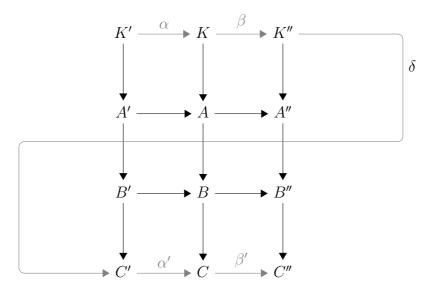
- let $A \in C$ and P_*, P'_* be projective resolution of A by previous theorem, $P_* \simeq P'_*$ for some homotopy h. Then \mathcal{F} additive implies that $\mathcal{F}P_* \simeq \mathcal{F}P'_*$ implies $H_n(\mathcal{F}P_*) \simeq H_n(\mathcal{F}P'_*)$ (we have $f_*g_* \simeq h$ Id implies that $\mathcal{F}(f_*)\mathcal{F}(g_*) \simeq H_n(\mathcal{F}P'_*)$ (we have $f_*g_* \simeq h$ Id implies that $\mathcal{F}(f_*)\mathcal{F}(g_*) \simeq H_n(\mathcal{F}P'_*)$).
- For $f \in C(A, B)$, let f_*, f'_* be lifts of f, by theorem $f_* \simeq f'_*$ we have $\mathcal{F}(f_*) \simeq \mathcal{F}(f'_*)$. This implies that $H_n(f_*) = H_n(f'_*)$.
- We have $L^0\mathcal{F}(A) = H_0(\mathcal{F}P_*)$ for $P_* \to A$ projective resolutions of A. Then \mathcal{F} right exact and $P_* \to A \to 0$ exact which implies that $\mathcal{F}P_1 \xrightarrow{\mathcal{F}d_1} \mathcal{F}P_0 \xrightarrow{\mathcal{F}d_0} \mathcal{F}A \longrightarrow 0$ exact. Thus $\operatorname{coker}(\mathcal{F}d_1) = \mathcal{F}A$.

14.2 Long Exact Sequences

Theorem 14.2.1 (Snake Lemma). Let *C* be an additive category, suppose *C*-diagram



commutes and is row exact. Let (K,q), (K',q'), (K'',q'') kernels of d, d', d'' and (C,p), (C',p'), (C'',p'') cokernels, then there is $\alpha, \beta, \alpha', \beta', \delta$, such that



(the diagram borrows from here) commutes and

$$K' \xrightarrow{\alpha} K \xrightarrow{\beta} K'' \xrightarrow{\delta} C' \xrightarrow{\alpha'} C \xrightarrow{\beta'} C''$$

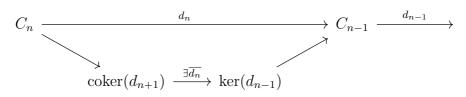
is exact.

Theorem 14.2.2. Let C be abelian category, if $0 \to A_* \to B_* \to C_* \to 0$ is exact sequence of C-chains, then there exists $(\delta_n)_{n>0}$ such that

$$\cdots \to H_n(A_*) \to H_n(B_*) \longrightarrow H_n(C_*) \xrightarrow{\delta_n} H_{n-1}(A_*) \to H_{n-1}(B_*) \to \cdots$$

is exact.

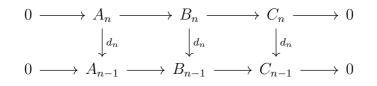
Lemma 14.2.3. Alternative definition of $H_n(C_*)$ for C_* a C-chain is



and $H_{n-1} = \operatorname{coker}(\overline{d_n})$ (easy to see from definition of H_n). Also $H_n = \operatorname{ker}(d_n)$ (not obvious it coincide with definition of H_n).

Example 14.2.4. Check this in $\mathcal{R} - \mathcal{M}od$.

Proof of Theorem 14.2.2. Let n > 0, then



commutes and row exact. By snake lemma, we have

$$0 \longrightarrow \ker(d_n^A) \longrightarrow \ker(d_n^B) \longrightarrow \ker(d_n^C)$$

is exact and

$$\operatorname{coker}(d_n^A) \longrightarrow \operatorname{coker}(d_n^B) \longrightarrow \operatorname{coker}(d_n^C) \longrightarrow 0$$

is exact implies that

commutes. Hence snake goes through H_n :

$$H_n(A) \longrightarrow H_n(B) \longrightarrow H_n(C) \xrightarrow{\delta} H_{n-1}(A) \longrightarrow H_{n-1}(B) \longrightarrow H_n(C).$$

Same story for cohomology.

Theorem 14.2.5. Let C, \mathcal{D} be abelian categories, let $\mathcal{F} : C \to \mathcal{D}$ be left or right exact additive functors, let

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

be short exact in C, then there is long exact sequence in \mathcal{D} , such that

• for *F* covariant right exact

$$\cdots \xrightarrow{\delta} L^1(\mathcal{F}A) \longrightarrow L^1\mathcal{F}B \longrightarrow L^1\mathcal{F}C \xrightarrow{\delta_1} \mathcal{F}A \xrightarrow{\mathcal{F}f} \mathcal{F}B \xrightarrow{\mathcal{F}g} \mathcal{F}C \longrightarrow 0$$

exact.

• For \mathcal{F} covariant left exact,

$$0 \longrightarrow \mathcal{F}A \longrightarrow \mathcal{F}B \longrightarrow \mathcal{F}C \stackrel{\delta}{\longrightarrow} R^1 \mathcal{F}A$$

exact.

• For *F* contravariant right exact,

$$\cdots \longrightarrow L^1 \mathcal{F} A \xrightarrow{\delta_1} \mathcal{F} C \longrightarrow \mathcal{F} B \longrightarrow \mathcal{F} A \longrightarrow 0$$

exact.

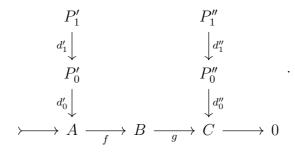
Proof for \mathcal{F} *covariant right exact.* Claim 1: there is projective resolutions $P'_* \to A, P_* \to B, P''_* \to C$ and chain maps f_*, g_* lifting f and g and such that

$$\cdots \to 0 \to P'_* \xrightarrow{f_*} P_* \xrightarrow{g_*} P''_* \to 0$$

is exact.

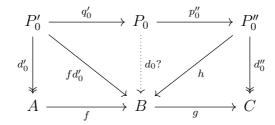
Claim 2: The sequence $0 \to \mathcal{F}P'_* \to \mathcal{F}P_* \to \mathcal{F}P''_* \to 0$ is exact. Then can apply the long exact sequence of homology on this \mathcal{D} -chain which gives the result. \Box

Proof of Claim 1 (Horseshoe lemma). We have the diagram



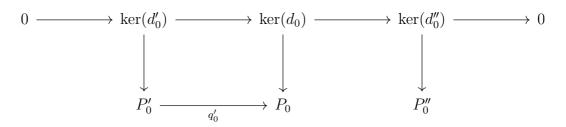
Let $P'_n \to A$ be projective resolution of A and $P''_n \to C$ be projective resolution of C. Let $P_n = P'_n \oplus P''_n$. Let $p'_n : P_n \to P'_n, p''_n : P_n \to P''_n$ be projection: (P_n, p'_n, p''_n) is product of P'_n, P''_n via C. Let $q'_n : P'_n \to P_n, q''_n : P''_n \to P_n$ be embedding: (P_n, q'_n, q''_n) is coproduct.

We can choose them such that $p'_n q'_n = \text{Id}_{P'_n}, p''_n q'_n = 0, p'_n q''_n = 0, p''_n q''_n = \text{Id}, q'_n p'_n + q''_n p''_n = \text{Id}_{P_n}$. Then d_0 :

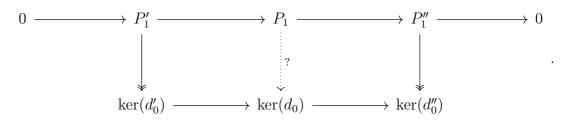


We have g epimorphism, p''_0 projective implies that there is $h, gh = d''_0$. Let $d_0 = fd'_0p'_0 + hp''_0$. It commutes and d_0 is epimorphism (check).

How about d_1 ? We have d_0, d'_0, d''_0 are epimorphism, then snake lemma implies



exact. Hence we have same situation as for d_0 :



Then left for homework that $\mathcal{F}(P'_n \oplus P''_n) = \mathcal{F}(P'_n) \oplus \mathcal{F}(P''_n)$ implies that

$$0 \longrightarrow \mathcal{F}P_n \longrightarrow \mathcal{F}P_n \longrightarrow \mathcal{F}P_n'' \longrightarrow 0$$

is exact.

14.3 Tor Functors

Definition 14.3.1. Let *R* be commutative ring, let *A* be *R*-module, let $\mathcal{F}_A = A \otimes -$: $\mathcal{R} - \mathcal{M}od \rightarrow \mathcal{R} - \mathcal{M}od$ defined by

 $\forall B \in \mathcal{R} - \mathcal{Mod}, \mathcal{F}_A(B) = A \otimes B,$

 $\forall f \in \mathcal{R} - \mathcal{M}od \text{ homomorphism, } \mathcal{F}_A(f) = \mathrm{Id}_A \otimes f.$

Say \mathcal{F}_A covariant additive functor, we have seen before that \mathcal{F}_A is right exact, then

$$\operatorname{Tor}_n(A, B) = L^n \mathcal{F}_A(B) = H_n(A \otimes P_*)$$

where the last term is from $\mathcal{F}_A(P_*)$, where $P_* \to B \to 0$ is projective resolution for B. In other words, $\operatorname{Tor}_n(A, B) = \operatorname{ker}(\operatorname{Id}_A \otimes d_n^B) / \operatorname{Im}(\operatorname{Id}_A \otimes d_{n+1}^B)$ where $\cdots \to P_1 \xrightarrow{d_1} P_0 \to B \to 0$.

Example 14.3.2. Let $R = \mathbb{Z}$, A a \mathbb{Z} -module (additive group) and $B = \mathbb{Z}/n\mathbb{Z}$, then $\operatorname{Tor}_n(A, B) = \ker(\operatorname{Id}_A \otimes d_n)/\operatorname{Im}(\operatorname{Id}_A \otimes d_{n+1})$. Take P_* to be $0 \to \mathbb{Z} \xrightarrow{d_1} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0$ where $d_1(x) = nx$. Then

$$\operatorname{Tor}_0(A\mathbb{Z}/n\mathbb{Z}) = \ker(0)/\operatorname{Im}(\operatorname{Id}_A \otimes d_1) = A \otimes \mathbb{Z}/A \otimes n\mathbb{Z} \simeq A/nA(\simeq A \otimes \mathbb{Z}/n\mathbb{Z}).$$

Also

$$\operatorname{Tor}_1(A, \mathbb{Z}/n\mathbb{Z}) = \ker(\operatorname{Id}_A \otimes d_1)/0 \simeq \ker(\widetilde{d_1})$$

by $A \otimes \mathbb{Z} \simeq A = \{a \in A | na = 0\}$ where $\widetilde{d_1} : A \to A$ by $x \mapsto nx$. Further,

 $\operatorname{Tor}_n(A, \mathbb{Z}/n\mathbb{Z}) = 0, \forall n > 0.$

Proposition 14.3.3. We have $\operatorname{Tor}_n(A, B) \simeq \operatorname{Tor}_n(B, A)$.

14.4 Ext Functors

Definition 14.4.1. Let *C* be abelian category and let $A \in C$, the functor $\mathcal{F} = \text{Hom}_{\mathcal{C}}(A, -) : \mathcal{C} \to \mathcal{A}\mathcal{B}$ is covariant additive and left exact and

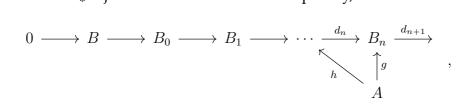
$$\forall B \in C, \mathcal{F}(B) = C(A, B),$$
$$\forall f \in C(B, B'), \mathcal{F}(f) = f_{\#}$$
$$C(A, B) \rightarrow C(A, B')$$

where $f_{\#}$ is

$$C(A, B) \to C(A, B')$$

 $g \mapsto fg.$

Then $\operatorname{Ext}_n(A, B) = R^n \mathcal{F}(B) = H^n(\mathcal{C}(A, B_*))$ where the last term is from $\mathcal{F}(B_*)$ where $0 \to B \to B_*$ injective coresolution of *B*. Explicitly, take



for any $n \ge 0$, we have

$$\operatorname{Ext}_{n}(A, B) = \operatorname{ker}(d_{n+1}\#)/\operatorname{Im}(d_{n}\#)$$
$$= \{g \in C(A, B_{n}) | d_{n+1}g = 0\}/\{d_{n}h | h \in C(A, B_{n-1})\}.$$

Remark 14.4.2. Let $B \in C$, $\tilde{F} = \text{Hom}_{C}(-, B) : C \to \mathcal{A}b$ contravariant left exact. By definition, $R^{n}\tilde{F}(A) = H^{n}(C(A_{*}, B))$ where $A_{*} \to A \to 0$ projective resolution of A. Explicitly we have

and $R^n \widetilde{F}(A) = \ker(\# d_{n+1}) / \operatorname{Im}(\# d_n)$

$$= \{g \in \mathcal{C}(A_n, B) | gd_{n+1} = 0\} / \{hd_n | h \in \mathcal{C}(A_{n-1}, B)\}.$$

Theorem 14.4.3. We have $H_n(\mathcal{C}(A, B)) \simeq H^n(A_*, B)$ so both give $\operatorname{Ext}_n(A, B)$. In fact, both are isomorphic to the additive group

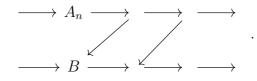
$$G_n = \{f_* : A^{(n)} \rightarrow B^{(n)} \text{ chain map}\}/\text{homotopy}$$

where

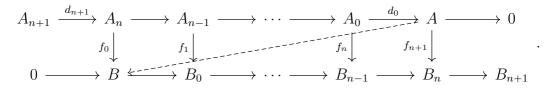
Sketch of Proof. Let $f_* : A^{(n)} \to B^{(n)}$ and $f_* = (b_i)_{0 \le i \le n+1}$ chain map. By definition of chain map $f_0 \in \ker(\#d_{n+1}^A)$ and $f_{n+1} \in \ker(d_{n+1}^B \#)$. Moreover (to check) for any $f_0 \in \ker(\#d_{n+1}^A)$, there is f_* lifting of f_0 to $A^{(n)} \to B^{(n)}$ and f_* is unique up to homotopy because $A^* \to A \to 0$ exact, and B_* injective. For any $f_{n+1} \in \ker(d_{n+1}^B \#)$ there is f_* lifting, unique up to homotopy. This gives surjective homomorphism

$$\phi : \ker(\#d_{n+1}^A) \longrightarrow G_n,$$
$$\psi : \ker(d_{n+1}\#) \longrightarrow G_n.$$

Moreover (check) ker $\phi = \text{Im}(\#d_n^A \text{ and } \text{ker } \psi = \text{Im}(d_n^B \#)$. Hence the isomorphism



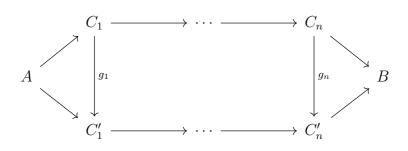
Definition 14.4.4. Ext



Additional interpretation of Ext_n , for n > 0 let $\epsilon_n(A, B) = \{0 \rightarrow B \rightarrow C_1 \rightarrow \cdots \rightarrow C_n \rightarrow A \rightarrow 0 \text{ exact sequence}\} / \sim \text{ where}$

 $0 \to B \to C_* \to A \to 0 \sim 0 \to B \to C'_* \to A \to 0$

if there is $g_* : C_* \to C'_*$ chain map such that

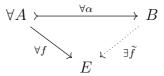


commutes.

The Category R-Mod Has Enough Injective

5

Definition 15.0.1. For any



commutes, for any $\alpha : A \to B$ injective *R*-module homomorphism, for any $f : A \to E$ homomorphism, there is $\tilde{f} : B \to E$ such that $f = \tilde{f}\alpha$.

Lemma 15.0.2 (Baer's Criterion). A R-module E is injective if and only if for any $I \subseteq R$ ideal, for any $f : I \to E$, there is $\tilde{f} : R \to E$, $f = \tilde{f}\epsilon$ where $\epsilon : I \to R$ is the inclusion map.

Proof. (\Longrightarrow) : Obvious ϵ is injective homomorphism. (\Leftarrow) : Suppose *E* satisfies this condition, let

 $\alpha: A \rightarrow$ injective homomorphism,

 $f: A \rightarrow E$ homomorphism.

Want to show that there is $\tilde{f} : B \to E$ such that $f = \tilde{f}\alpha$. Let $\Omega = \{(X, h), X \subseteq B \text{ submodule and } h : B \to E, f = h\alpha\}$ ordered by $(X, h) \leq (X', h')$ if $X \subseteq X'$ and $h|_X' = h$.

By Zorn's Lemma, there is maximal element $(X, h) \in \Omega$. If X = B, suppose not, let $b \in B \setminus X$, let $I = \{r \in R | rb \in X\}$. This is ideal of R. By hypothesis (applied to $g : I \to E$ by $r \mapsto h(rb)$). There is $\overline{g} : R \to E$ such that $r \in I, \widetilde{g}(r) = h(rb)$. Define

$$X' = X + (b),$$

$$h': X' \to E,$$

 $x + rb \mapsto h(X) + \tilde{g}(r).$

We see (X, h) < (X', h') contradicting the maximality of (X, h).

Definition 15.0.3. Let *R* be a domain. A *R*-module *M* is **divisible** if $\forall x \in M, \forall d \in R, \exists y \in M$ such that dy = x.

Corollary 15.0.4. If R is PID, then a R-module E is injective if and only if E is divisible.

Proof. (\Leftarrow): Let *E* be divisible, we use Baer's criterion to show *E* is injective. Let $I \subseteq R$ ideal, let $\epsilon : I \to R$ inclusion map, let $f : I \to E$ be *R*-module homomorphism. Then *R* PID implies that I = (d). Let x = f(d) and let *y* such that dy = x. We can define $\tilde{f}(1) = y$ and $\tilde{f}(r) = ry$ and check that $f = \tilde{f}\epsilon$.

 (\Longrightarrow) : Let *E* injective, let $x \in E$, let $d \in R$, let $f : (d) \to E$ such that f(rd) = rx. Then there is $\tilde{f} : R \to E$ such that $f = \tilde{f}\epsilon$. Then $y = \tilde{f}(1)$ satisfies $dy = \tilde{f}(d) = f(d) = x$.

Example 15.0.5. The modules \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are divisible \mathbb{Z} -modules, hence injective \mathbb{Z} -modules.

Theorem 15.0.6. For any ring R, the category $\mathcal{R} - \mathcal{Mod}$ has enough injectives: for any M left R-module, there is E injective R-module and $M \rightarrow E$ injective R-module homomorphism (same holds for $\mathcal{Mod} - \mathcal{R}$ category of right R-modules).

Definition 15.0.7. We call the **dual** of a left/right *R*-module is the right/left *R*-module. We write $M^{\wedge} = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$. If *M* is left *R*-module, the *R*-action is defined by $\forall r \in R, \forall f \in \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ such that

 $(f \cdot r)(x) := f(rx).$

This is a R-action ($(f \cdot r \cdot s)(x) = (f \cdot r)(sx) = f(rsx) = (f \cdot (rs))(x)$). If R is right R-module we define

$$(r \cdot f)(x) := f(xr).$$

Proposition 15.0.8. *If* F *is a free right* R*-module, then* F^{\wedge} *is injecitve left* R*-module.*

Lemma 15.0.9. In C abelian, we have E injective if and only if $Hom_{\mathcal{C}}(-, E)$ is exact.

Lemma 15.0.10. In *C* abelian, for any *i*, we have if E_i injective then $\bigoplus_i E_i$ is injective.

Proof. Homework.

Remark 15.0.11. For any A, B that are left R-modules, say $\operatorname{Hom}_R(A, B) = \{f \text{ left } R$ -module homomorphism} is a right R-module with R-action defined by for any $r \in R, \forall f \in \operatorname{Hom}_R(A, B), (f \cdot r)(x) := f(rx)$ (this is a R-action since $f \cdot r \cdot s = f \cdot rs$).

Lemma 15.0.12. For any A left R-module, we have $\operatorname{Hom}_R(A, R^{\wedge}) \simeq A^{\wedge}$ (isomorphism of right R-module) where R is considered as a right R-module and $R^{\wedge} = \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q}/\mathbb{Z})$ is a left R-module.

Proof. Let *A* be a left *R*-module, for $f \in \text{Hom}_R(A, R^{\wedge}), x \in A, r \in R$ we have

$$\operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q}/\mathbb{Z}) = R^{\wedge} \ni f(x)(r) = f(x)(1 \cdot r) = (r \cdot f(x))(1) = f(r \cdot x)(1)$$

by the definition of action in R^{\wedge} and f homomorphism. Define

$$\tilde{f}: A \longrightarrow \mathbb{Q}/\mathbb{Z} \in A^{\wedge},$$

 $x \longmapsto f(x)(1).$

Above computation shows that ϕ : Hom_{*R*}(*A*, *R*^{\wedge}) \rightarrow *A*^{\wedge} such that $f \mapsto \tilde{f}$ is an isomorphism of right *R*-modules. Then

- ϕ homomorphism since $(\widetilde{f} \cdot r(x)) = (fr)(x)(1) = f(rx)(1) = \widetilde{f}(rx) = (\widetilde{f} \cdot r)(x)$.
- ϕ injective since $f \in \text{Hom}_R(A, R^{\wedge})$ is determined by $f(y)(1), y \in A$,
- ϕ surjective since $g \in A^{\wedge}$ is \tilde{f} for $f \in \operatorname{Hom}_{R}(A, R^{\wedge})$ defined by $f(x)(r) := g(r \cdot x)$ (since $\tilde{f}(x) = f(x)(1) = g(x)$).

Hence the lemma.

Proof of Proposition 15.0.8. We have

- Q/ℤ is injective ℤ-module, hence by Lemma 15.0.9 we have Hom_ℤ(−, ℚ/ℤ) is exact.
- By Lemma 15.0.12, for any $A \in \mathcal{R} \mathcal{Mod}$, we have $\operatorname{Hom}_R(A, \mathbb{R}^{\wedge}) \simeq \operatorname{Hom}(A, \mathbb{Q}/\mathbb{Z})$ in $\mathcal{Mod} \mathcal{R}$. Hence $\operatorname{Hom}_R(-, \mathbb{R}^{\wedge})$ and $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Q}/\mathbb{Z})$: $\mathcal{R} \mathcal{Mod} \to \mathcal{Mod} \mathcal{R}$ are isomorphic functors. Hence $\operatorname{Hom}_R(-, \mathbb{R}^{\wedge})$ is exact. Therefore by Lemma 15.0.9, we have \mathbb{R}^{\wedge} is injective in $\mathcal{R} \mathcal{Mod}$.
- Let *F* be free right *R*-module, then $F \simeq \bigoplus_{i \in I} R$ for some set *I*. Hence $F^{\wedge} \simeq \operatorname{Hom}_{\mathbb{Z}}(\bigoplus_{i \in I} R, \mathbb{Q}/\mathbb{Z}) \simeq \prod_{i \in I} \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q}/\mathbb{Z}) = \prod_{i \in I} R^{\wedge}$. By Lemma 15.0.10, we have $F^{\wedge} \simeq \prod R^{\wedge}$ is injective.

Hence the proposition.

Proposition 15.0.13. For any M left R-module, there is F free right R-module and an injective R-module homomorphism $M \rightarrow F^{\wedge}$.

Proposition 15.0.8 and Proposition 15.0.13 together implies Theorem 15.0.6. That is, " $\mathcal{R} - \mathcal{M}od$ " has enough injectives.

Lemma 15.0.14. For any M left R-module, there is injective R-module homomorphism $M \rightarrow M^{\wedge \wedge}$.

Proof. For $x \in M$, let

$$\operatorname{ev}_x: M^{\wedge} \longrightarrow \mathbb{Q}/\mathbb{Z},$$

 $f \longmapsto f(x)$

evaluation at *x*. Note that $ev_x \in M^{\wedge \wedge}$ and

$$E_v: M \longrightarrow M^{\wedge \wedge},$$
$$x \longmapsto \operatorname{ev}_x.$$

Easy to check that E_v is a R-module homomorphism. Indeed, for any $r \in R, \forall x \in M, \forall f \in M^{\wedge}$, we have

$$\operatorname{ev}_{r \cdot x}(f) = f(rx) = (f \cdot r)(x) = \operatorname{ev}_x(f \cdot r) = (r \cdot \operatorname{ev}_x)(f)$$

where the last equality is because it is action in $M^{\wedge\wedge}$. Hence $E_v(rx) = rE_v(x)$. It remains to show that E_v is injective (\Longrightarrow check ker $(E_v) = 0$).

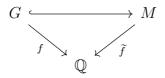
Let $x \in M \setminus \{0\}$, need to show that $ev_x \neq 0$. Let $G := \{kx : k \in \mathbb{Z}\} \subseteq M$ additive subgroup of (M, +) generated by x. Then G cyclic implies that $G \simeq \mathbb{Z}$ or $G \simeq \mathbb{Z}/n\mathbb{Z}$ with $n \ge 0$ ($x \ne 0$).

If $G \simeq \mathbb{Z}$, we let

If $G \simeq \mathbb{Z}/n\mathbb{Z}$ we let

$$f: G \longrightarrow \mathbb{Q}/\mathbb{Z},$$
$$kx \longmapsto \frac{k}{z} + \mathbb{Z}.$$
$$f: G \longrightarrow \mathbb{Q}/\mathbb{Z},$$
$$kx \longmapsto \frac{k}{n} + \mathbb{Z}.$$

In both cases, f is \mathbb{Z} -module homomorphism since \mathbb{Q}/\mathbb{Z} injective, there exists $\tilde{f} \in \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}) = M^{\wedge}$ such that



commutes. Observe that $f(x) \neq 0$ implies $\tilde{f}(x) \neq 0$. Hence $ev_x(f) \neq 0$ implies that $ev_x \neq 0$.

Proof of Proposition 15.0.13. The duality functor $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Q}/\mathbb{Z})$ is left exact (as any Hom functor) and additive. Let $M \in \mathcal{R} - \mathcal{Mod}$, in $\mathcal{Mod} - \mathcal{R}$, there is F free and $\beta : F \to M^{\wedge}$ surjective homomorphism. Since the duality functor is contravariant left exact, the image of epimorphism β is a monomorphism $\beta^{\wedge} : M^{\wedge \wedge} \to F^{\wedge}$. Hence we get $M \xrightarrow{E_v} M^{\wedge \wedge} \xrightarrow{\beta^{\wedge}} F^{\wedge}$ in $\mathcal{R} - \mathcal{Mod}$.

E-mail: hou@brandeis.edu