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1
Algebras and Representation

1.1 Basic Definitions

Definition 1.1.1. Let K be a ring, then a K´algebra pA,`, ¨,ˆq is a K´module
pA,`, ¨q together with a bilinear operation multiplication ˆ : AˆA Ñ A such that

D1 P A, 1 ˆ x “ x ˆ 1 “ x, @x P A,

x ˆ py ˆ zq “ px ˆ yq ˆ z.

Equivalently, pA,`, ¨q is K´module, pA,`,ˆq is a ring, and ˆ is bilinear, pk ¨ xq ¨

y “ x ˆ pk ¨ yq “ k ¨ px ˆ yq.

From now on, K is a field, so the K´algebras are K´vector spaces (in partic-
ular, have basis).

Example 1.1.2. (1). Let K “ R, A “ RrX1, ¨ ¨ ¨ , Xns polynomials in n commuting
variables.

(2). Let K “ R, A “ RxX1, ¨ ¨ ¨ , Xny polynomials in n non-commuting vari-
ables.

(3). For V a K´vector space, A “ pEndpV q,`, ¨, ˝q is a K´algebra, where
EndpV q is linear maps from V to V .

(4). Let B “ pMatnpKq,`, ¨,ˆq is a K´algebra, where Matn is n ˆ n matrices
and is isomorphic to pEndpKnq,`, ¨, ˝q as representation of linear map of matrices.

Definition 1.1.3. Let A,B be K´algebra, f : A Ñ B is an algebra homomor-
phism if respects the operations `, ¨,ˆ. Equivalently, f is K´linear map and ring
homomorphism.

Note that f is isomorphism if bijective and homomorphism and A » B means
“isomorphic”: Df : A Ñ B isomorphism.
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1.1. BASIC DEFINITIONS 6

Remark 1.1.4. The ring-quotient construction gives an algebra quotient: if I is a
(two-sided) ideal ofA thenA{I “ tx`I, x P Au has structure of algebra pkpx`Iq “

kx ` Iq.

Example 1.1.5. We see RrXs{Xn and RrXs{pXn ´ 1q are algebras.

Remark 1.1.6. The fundamental isomorphism theorems for rings hold for alge-
bras. In particular, if f : A Ñ B is algebra homomorphism then Impfq » A{ kerpfq

as algebras.

Definition 1.1.7. LetG be a group. The group algebraKrGs is theK´vector space
with basis G and multiplication in KrGs obtained by extending multiplication in
G K´linearly.

Example 1.1.8. Let G “ S3, K “ C and x “ 2Id ` 5p1, 3q, y “ Id ´ p1, 2, 3q P CrS3s.
Then x ˆ y “ p2Id ` 5p1, 3qq ˆ pId ´ p1, 2, 3qq “ 2Id ´ 2p1, 2, 3q ` 5p1, 3q ´ 5p1, 2q.

Remark 1.1.9. We see KrGs is a natural setting to do computations about G.

Example 1.1.10. We take x “
ř

1ďiăjďnpi, jq P CrSns sum of all transpositions.
Then xk “

ř

πPSn
cππ where cπ “ number of ways of getting π as product of

K´transpositions.

Definition 1.1.11. Let A be a K´algebra, a representation of A is pV, ρq where V
is a nonzero K´vector space and ρ is a homomorphism of algebra A Ñ EndpV q.

This is @a P A, ρpaq P EndpV q is a linear map, that is, @a, b P A, ρpa ` bq “

ρpaq ` ρpbq, ρpa ˆ bq “ ρpaq ˝ ρpbq, ρp1q “ Id and ρpkaq “ kρpaq.
Equivalently, upon denoting a ¨ v for ρpaqpvq where a P A, v P V , we must have

this action is bilinear and associative: pa ˆ bq ¨ v “ a ¨ pb ¨ vq, 1 ¨ v “ v.

Definition 1.1.12. The dimension of pV, ρq is dimKpV q. Also pV, ρq is finite dimen-
sional (f.d.) if dimKpV q is finite.

Remark 1.1.13. If dimV “ n, then V » Kn as vector spaces and we can view ρpaq

as a matrix.

Example 1.1.14. LetA “ RrXs, given f P EndpKnq, we can define a representation
pV, ρq by V “ Kn, ρpP q “ P pfq where P “

ř

cix
i and P pfq “

ř

ci f ˝ ¨ ¨ ¨ ˝ f
loooomoooon

i

. In

matrix term, ρpP q “ P pMq “
ř

ciM
i where M is matrix representing f .

Remark 1.1.15. If tgiu are generators ofA, then a representation ofA is determined
by tρpgiqu. The linear maps ρpgiq must satisfy the same relations as gi.

Example 1.1.16. A representation for RrXs{pXn ´ 1q is determined by ρpXq satis-
fying ρpXqn “ Id.
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Remark 1.1.17. For A “ KrGs a group algebra representations are uniquely de-
termined by a group homomorphism

ρ : G ÝÑ GLpV q,

where GLpV q are invertible matrices (for all g P G, ρpgq P GLpV q since ρpg´1q “

ρpgq´1). The representations pV, ρq of KrGs is then determined by linear extension
ρp

ř

cggq “
ř

cgρpgq.

Example 1.1.18. (1). Let G “ Cn “ xxy{xxxn “ 1yy cyclic group with n elements.
For M P MatnpKq such that Mn “ Id we can define ρpxq “ M (Here KrCns »

RrXs{pXn ´ 1q).
(2). For instance, for K “ C,M “ rωs, ω “ e2iπ{m the m´th root of unity gives

a 1´dimensional representation ρpxmq “ rωms.

Definition 1.1.19. The regular representation of A is pVreg, ρregq where Vreg “ A as
K´vector space, ρregpaq is left multiplication by a, i.e., @a P A, v P Vreg “ A, we
have a ¨ v “ ρpaqpvq “ a ˆ v where ¨ is action and ˆ is multiplication in A.

Goal of Representation Theory:
(1). Describe all the A representations (in particular, ρreg) - decomposition into
“irreducible representations”.
(2). Use this description to simplify computation in A.

Remark 1.1.20. ForG a group, the representation of the group algebra is specified
by endomorphisms ρpgq, g P G such that ρp1q “ Id, and

ρpghq “ ρpgq ˝ ρphq, @g, h P G. (‹)

Observe that @g P G, ρpgqρpg´1q “ ρp1q “ Id. Hence @g P G, ρpgq P AutpV q

which are invertible linear maps V Ñ V . Note that p‹q means that ρ : G Ñ AutpV q

is group homomorphism.
In summary, for a group G, the K´representations of the group algebra KrGs

are uniquely determined by the group homomorphism ρ : G Ñ AutpV q, where V
is K´vector space.

The representation pV, ρq is then extended to KrGs by linearity, i.e., ρp
ř

cggq “
ř

cgρpgq. In terms of operations: p
ř

cggq ¨ v “
ř

cgpg ¨ vq.

Example 1.1.21. (1). Let A “ KrGs, V “ k, ρpgq “ IdK for g, the trivial representa-
tion with dimension 1.

(2). Let A “ Crcms, cm “ xgy{xxgm “ 1yy “ tg0 “ 1, g1, ¨ ¨ ¨ , gm´1u. Then
V “ C, ρpgkq “ ωkIdK where ωm “ 1.

(3). Let A “ KrSms, V “ Km, @π P Sm, ρpπq “ “permutation matrices”. π ¨ ej “

eπpjq, ej “ p0, ¨ ¨ ¨ , 1, 0, ¨ ¨ ¨ , 0q where the only 1 is at the j´th coordinate as ej basis
of Km. Then π ¨ px1, ¨ ¨ ¨ , xmq “ pxπ´1p1q, ¨ ¨ ¨ , xπ´1pmqq.
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(4). Let A “ KrGs, for any G´set S, we can define KS “vector space with
basis S and representation given by ρpgq ¨ s “ g ¨ s where the latter ¨ is g action.
(Hence ρpgqp

ř

cSSq “
ř

cSpg ¨ Sq, ρpgq is a representation in basis S).

Remark 1.1.22. The regular representation KrGs is of this form (action G ñ G by
left translation).

Definition 1.1.23. Let pV, ρq, pV 1, ρ1q be representation of K´algebra A, a homo-
morphism of representation is ϕ : V Ñ V 1 linear such that

@a P A, @v P V, ϕpa ¨ vq “ a ¨ ϕpvq,

where the first ¨ is the action on ρ and the second ¨ is the action on ρ1.

For notation, HomApV, V 1q is the vector space of representation homomor-
phism V Ñ V 1 (ρ, ρ1 are implicit).

Definition 1.1.24. The isomorphism of representations is bijective homomor-
phism of representations.

We say V » V 1 if there exists isomorphism V Ñ V 1.

Remark 1.1.25. If pV, ρq » pV 1, ρ1q, then there exists matrix P such that @a P

A,PρpaqP´1 “ ρ1paq (Indeed, if P represents the isomorphism V Ñ V 1, then
Pρpaq “ ρ1paqP ). Equivalently, the matrices ρpaq and ρpa1q are equal up to a change
of basis.

Example 1.1.26 (Toy model). Let A “ Crcms, cm “ xgy{xxgm “ 1yy, then
(1). In the basis tg0, ¨ ¨ ¨ , gm´1u we have

ρregpgjq “

m ´ j
¨

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‚

0 0 0 1 . . . 0

0 0 0 0
. . . 1

0 0 0 0 0
...

1 0 0 0 0 0 j
... . . . 0 0 0 0
0 . . . 1 0 0 0

.

Hence ρregp
řm´1
i“0 kig

iq is the matrix with all 1 entries. Let ω “ e2πi{m and consider
basis h0, ¨ ¨ ¨ , hm´1 where hj “

řm´1
j“0 ω

jdgj . In this basis, we have

ρregpgjq “

¨

˚

˝

ω´p1´1qj “ 1 0
. . .

0 ω´pm´1qj

˛

‹

‚

,
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the diagonal matrix.
(2) The change of basis pg0, ¨ ¨ ¨ , gm´1q to ph0, ¨ ¨ ¨ , hn´1q simplifies computation.

Actually this is equivalent to discrete Fourier transform (DFT). That is, regard
ř

kig
i as “function with value ki” and hi pointwise waves. Change of basis: write

functions as linear combination of waves.

Convolution of function DFT
ÐÑ pointwise multiplication.

Useful for fast multiplication of polynomial or numbers.

1.2 Decomposition of Representation and Schur’s
Lemma

Definition 1.2.1. Let pV, ρq be a A´representation, then

• a subrepresentation is a subspace 0 ‰ W of V such that @a P A, a ¨ W Ď W .
In this case, pW, ρ|W q is a A´representation; and

• the representation pV, ρq is irreducible if it has no proper subrepresentation.

Remark 1.2.2. For all v P V,A ¨v “ xa ¨v, a P Ay is a subrepresentation of V . Hence
V is irreducible if and only if @v P V,Av “ V .

Lemma 1.2.3. If A is finite dimensional (e.g., A “ KrGs where G is finite), then any
irreducible representation of A is also finite dimensional.

Proof. We have V irreducible ùñ Av “ V where dimAv ď dimA ă 8.

We say “irreps” to mean finite dimensional irreducible representations.

Remark 1.2.4. If ϕ P HomApV,W q, then Impϕq, kerpϕq are subrepresentations.

Lemma 1.2.5 (1st Isomorphism Theorem). We have that

• if V isA´representation, andW Ď V subrepresentation, then V {W “ tv`W, v P

V u has structure of A´representation: a ¨ v “ a ¨ v where v “ v ` W ; and

• if ϕ P HomApV,W q then Impϕq “ V { kerpϕq.

Definition 1.2.6. Let V1, ¨ ¨ ¨ , Vk be A´representations, the direct sum is the rep-
resentation V1 ‘ ¨ ¨ ¨ ‘ Vk with A´action a ¨ pv1, ¨ ¨ ¨ , vkq “ pa ¨ v1, ¨ ¨ ¨ , a ¨ vkq. The
direct sum can be viewed as vector spaces tpv1, ¨ ¨ ¨ , vkqu where vi P Vi. In terms of
matrices we have

ρpaq “

¨

˚

˝

ρ1paq 0
. . .

0 ρnpaq

˛

‹

‚

,

where each ρipaq is a block instead of just an entry.
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For notation, we use mV to denote V ‘ ¨ ¨ ¨ ‘ V for m times.

Lemma 1.2.7. If W,W 1 Ď V subrepresentations such that W `W 1 “ V,W XW 1 “ t0u,
then V » W ‘ W 1 as A´representations.

Proof. It suffices to consider the homomorphism:

ϕ : W ‘ W 1
ÝÑ V,

pw,w1
q ÞÝÑ w ` w1.

Then the statement follows.

Example 1.2.8. (1). Let A “ KrSms and pV, ρq representation defined by π ¨ ρi “

ρπpiq, then W “ tpx, ¨ ¨ ¨ , xq, x P Ku, which is isomorphic to the trivial represen-
tation, is subrepresentation. Also consider W 1 “ tpx1, ¨ ¨ ¨ , xnq,

ř

xi “ 0u is a
subrepresentation.

(2). Let A “ CrS3s, π ¨ ρi “ ρπpiq. In basis tp1, 1, 1q, p1,´1, 0q, p1, 0,´1qu where
the first term is from W and the latter two are from W 1, we get

ρpp1, 2qq “

¨

˝

1 0 0
0 ´1 ´1
0 0 1

˛

‚, ρpp1, 3qq “

¨

˝

1 0 0
0 1 0
0 ´1 ´1

˛

‚,

and we have ρpaq “

¨

˝

‹ 0 0
0 ‹ ‹

0 ‹ ‹

˛

‚.

Lemma 1.2.9 (Matschke). Let G be a finite group, suppose charpkq does not divide |G|.
Then any finite representation of G is isomorphic to a sum of irreps.

Proof. It suffices to show that @W Ď V subrepresentations W , there exists W Ď V
subrepresentations such that V » W ‘W . That is, it suffices to show W `W “ V
and W X W “ t0u. We start with W 1 Ď V subspace such that W ` W 1 “ V and
W X W 1 “ t0u.

Let ϕ : V Ñ V linear such that ϕ|W “ IdW and ϕ|W 1 “ 0. We have W 1 “ kerϕ
but ϕ R EndKrGspV q and W 1 not subrepresentation a priori.

Let ψ “
ř

gPG ρpg´1q ˝ ϕ ˝ ρpgq (i.e., ψpvq “
ř

gPG g
´1ϕpgvq). Thus we have

• ψ P EndKrGspV q because @h P G, @v P V , we have

ψphvq “
ÿ

gPG

g´1ϕpghvq “ h
ÿ

gPG

h´1g´1ϕpghvq “ h
ÿ

gPG

g´1ϕpgvq “ hψpvq.

Hence W “ kerψ is a subspace. We have
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• Imψ “ W because first Imψ Ď
ř

g g
´1Imϕ “

ř

g g
´1w Ď

ř

w “ W . Second,
we have @w P W,ψpwq “

ř

g´1ϕpgwq “
ř

g g
´1gw “ |G|w ‰ 0 in k (this is

why we need the condition for charpkq). Thus w “ ψp w
|G|

q and w P Imψ. We
have

• Imψ X kerψ “ t0u because @v P Imψ X kerψ we have v “ ψp v
|G|

q “ 0. We
have

• Imψ ` kerψ “ V 1 because v “ ψp v
|G|

q ` pv ´ ψp v
|G|

qq.

Hence the lemma.

Lemma 1.2.10 (Schur’s Lemma). Let K be algebraically closed, let A be a K´algebra,
let V,W be irreducible representations of A, then

dimpHomApV,W qq “

#

1 if V » W,

0 otherwise
.

Proof. Let ϕ P HomApV,W q, ϕ ‰ 0 and kerpϕq is subspace of V irreducible, then
kerϕ “ 0. Similarly, Imϕ is subspaces of W irreducible, thus Imϕ “ W . Hence ϕ is
isomorphism. Thus if V fi W then HomApV,W q “ t0u.

Suppose now V » W . Then up to composing by an isomorphism, we can
assume W “ V . We want to show dimpEndApV qq “ 1. We claim EndApV q “

tλIdV , λ P ku. Now for one direction Ě, it is obvious. For the other direction Ď,
let ϕ P EndApV q, @λ P k, we have ϕ ´ λId P EndApV q “ AutApV q Y t0u. Since k
is algebraically closed, Dλ P k eigenvalue of ϕ (root of characteristic polynomial),
then kerpϕ´ λIdq ‰ 0. Therefore ϕ´ λId is not isomorphism thus ϕ´ λId “ 0.

Corollary 1.2.11. Let K be algebraically closed, let V1, ¨ ¨ ¨ , Vk be non-isomorphic irreps
of A, then

dimpHomAp

k
à

i“1

niVi,
k

à

j“1

mjVjqq “

k
ÿ

i“1

nimi.

In particular, if U »
À

miVi, then mi “ dimpHomApVi, Uqq. So the multiplicities of
irreps in a representation are uniquely defined.

Before proving this corollary, we first claim and prove some lemma.

Lemma 1.2.12. Let V, V1, ¨ ¨ ¨ , Vk be A´representations, then

(1). HomApV,
À

i Viq »
À

iHomApV, Viq as vector spaces; and

(2). HomAp
À

i Vi, V q »
À

iHomApVi, V q as vector spaces.

Hence, HomAp
À

i Vi,
À

Wjq »
À

i,j HomApVi,Wjq.
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Proof of Lemma 1.2.12. (1). Consider isomorphism given by
à

i

HomApV, Viq ÝÑ HomApV,
à

i

Viq,

pϕ1, ¨ ¨ ¨ , ϕkq ÞÝÑ pϕ : v ÞÑ pϕ1pvq, ¨ ¨ ¨ , ϕkpvqqq.

(2). Consider isomorphism given by
à

i

HomApVi, V q ÝÑ HomAp
à

i

Vi, V q,

pϕ1, ¨ ¨ ¨ , ϕkq ÞÝÑ pϕ : pv1, ¨ ¨ ¨ , vkq ÞÑ
ÿ

i

ϕipviqq.

Hence the lemma.

Then we can prove the corollary.

Proof of Corollary 1.2.11. We have

dimpHomAp
à

i

niVi,
à

j

mjVjqq “ dimp
à

i,j

nimjHomApVi, Vjqq

“
ÿ

i,j

nimj dimpHomApVi, Vjqq

“
ÿ

i,j

nimjδij “

k
ÿ

i“1

nimj,

where δij is Kronecker delta by Schur’s Lemma.



2
Representations of Finite Groups

2.1 Fundamental Isomorphisms

Assumptions: Let G be a finite group, K be algebraically closed, charpKq ∤ |G|

(so Matschke’s and Schur’s Lemmas hold). “Irreps of G” is the irreps of KrGs.

Theorem 2.1.1. GroupG has finitely many (non-isomorphic) irreducible representations
V1, ¨ ¨ ¨ , Vr. Moreover Vreg »

Àr
i“1 dimpViqVi as G´representations.

Example 2.1.2. Let K “ C, G “ S3. We know 3 irreps already. They are
V1 “ trivial representation. (ρ1pπq “ IdC),
V2 “ sign representation. (ρ2pπq “ sgnpπqIdC),
V3 of dimension 2 determined by

ρpp1, 2qq “

ˆ

´1 ´1
0 1

˙

, ρpp1, 3qq “

ˆ

1 0
´1 ´1

˙

.

There are no other irreps and

CrS3s » V1 ‘ V2 ‘ 2V3

as S3´representations.
Equivalently, there exists basis of CrS3s in which

ρregpp1, 2qq “

¨

˚

˚

˚

˚

˚

˚

˝

1
´1

´1 ´1
0 1

´1 ´1
0 1

˛

‹

‹

‹

‹

‹

‹

‚

,

13
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and

ρregpp1, 3qq “

¨

˚

˚

˚

˚

˚

˚

˝

1
´1

1 0
´1 ´1

1 0
´1 ´1

˛

‹

‹

‹

‹

‹

‹

‚

.

Proof of Theorem 2.1.1. By Matschke’s Lemma, we have Vreg »
À

imiVi for some
mi ě 0, Vi irreps. By Schur’s Lemma, we have mi “ dimpHomGpVreg, Viqq.

For pV, ρq, G´representations, let HV “ HomGpVreg, V q. We claim that

HV “ tϵv, v P V u,where ϵv : Vreg “ KrGs ÝÑ V,

x ÞÝÑ x ¨ v.

For one direction pĚq : we have for all v P V, that ϵv P HV since @a P KrGs, we
have ϵvpa ¨ xq “ pa ¨ xq ¨ v “ pa ˆ xq ¨ v “ a ¨ px ¨ vq “ a ¨ ϵvpxq.
For the other direction pĎq : for all ϕ P HV , we have ϕ “ ϵϕp1Gq, indeed, @x P Vreg,
we have ϕpxq “ ϕpx ¨ 1Gq “ x ¨ ϕp1Gq “ ϵϕp1Gqpxq.

Conclusion:
ϵ : V ÝÑ Hv,

v ÞÝÑ ϵv,

is a surjective linear map. Also, ϵ is injective since v P kerpϵq implies ϵvp1Gq “ 0,
which means 1G ¨ v “ 0 so v “ 0.

Hence ϵ is bijective linear map. Hence dimpHV q “ dimpV q. This concludes the
proof.

Theorem 2.1.3 (Fundamental Isomorphism for Group Algebra). Let V1, ¨ ¨ ¨ , VR be
the non-isomorphic irreps of V . Then

Γ : KrGs ÝÑ

R
à

i“1

EndpViq,

x ÞÝÑ pρ1pxq, ¨ ¨ ¨ , ρRpxqq,

is an isomorphism of algebras.

Example 2.1.4. (1). Let G “ S3, K “ C, R “ 3, we have

ρpp1, 2qq “ pr1s, r´1s,

ˆ

´1 ´1
0 1

˙

q, ρpp1, 3qq “ pr1s, r´1s,

ˆ

1 0
´1 ´1

˙

q,
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and CrS3s isomorphic to algebra of matrix in Mat4pCq of form

¨

˚

˚

˝

‹

‹

‹ ‹

‹ ‹

˛

‹

‹

‚

.

(2). Let G “ Cn, K “ C,Γ is given by DFT, we have

ρregpgkq “

¨

˚

˝

ω´p1´1qk “ 1 0
. . .

0 ω´pm´1qk

˛

‹

‚

.

We have CrSns
Γ“DFT
ÐÑ algebra of diagonal matrices.

Proof of Theorem 2.1.3. By definition of G´representations, for all i, ρi is a homo-
morphism of algebra, hence Γ is a homomorphism of algebra.

We have dimpKrGsq “ |G|. We see dimp
À

EndpViqq “
ř

dimpEndpViqq “
ř

dimpViq
2. Moreover, by Theorem 1.3.1., we have

dimpKrGsq “ dimp
à

dimpViqViq “
ÿ

dimpViq dimpViq.

We have Γ is injective since x P kerpΓq, which implies @i, ρipxq “ 0. This means
that ρregpxq “ 0 and hence x “ x ¨ 1G “ ρregpxqp1q “ 0.

Corollary 2.1.5. We have number of non-isomorphic irreps of G “ number of conjugacy
classes.

Example 2.1.6. For Sn, we have number of irreps “ number of “cyclic types” “

number of partitions of n.

Proof of Corollary 2.1.5. Theorem 2.1.3 implies ZpKrGsq
Γ
» Zp

ÀR
i“1 EndpViqq, we

take dimension on both sides, then Zp
À

EndpViqq “
À

ZpEndpViqq. Moreover,
ZpEndpViqq “ tλIdVi , λ P ku has dim “ 1. This implies that dimp

ÀR
i“1 EndpViqq “

řR
i“1 dimpEndpViqq “ R.

Also x P ZpKrGsq if and only if @h P G, hxh´1 “ x. Hence x “
ř

gPGCgg P Z if
and only if @g, g1 conjugate, we have Cg “ Cg1 (i.e., coefficients are constant over
conjugate class).

Together we see that basis of Z is C1, ¨ ¨ ¨ ,Ck where Ci “
ř

gPGi
g, where Gi are

conjugacy class of G. Hence dimpZq “ number of conjugacy classes and hence
řn
i“1 dimpEndpViqq “ R “ number of irreps.

Consider x “
ř

iăjpi, jq P ZpCrSnsq. What is xk? Let V1, ¨ ¨ ¨ , VR be irreps of
G, and let Pi “ Γ´1p0, ¨ ¨ ¨ , IdVi , ¨ ¨ ¨ , 0q. Since p0, ¨ ¨ ¨ , IdVi , ¨ ¨ ¨ , 0q form a basis of
Zp

À

EndpViqq, we have tP1, ¨ ¨ ¨ , PRu is a basis of ZpKrGsq. Then we have the
following definition:
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Definition 2.1.7. This basis satisfies PiPj “ δijPi where the δij is the Kronecker
delta. These are the idempotents of the group algebra.

They make computation in ZpKrGsq easy. For instance, if x “
ř

ciPi then
xk “

ř

ckiPi. In the Cn example, Pi are the pointwise waves and multiplication in
CrCns is “simplified” by DFT.

2.2 Characters

Definition 2.2.1. Let A be a K´algebra, let pV, ρq be A´representations, the char-
acter of pV, ρq is

χV : A ÝÑ k,

a ÞÝÑ Trpρpaqq,

where Tr is the trace of the matrices.

This is well-defined, that is, does not depend on basis used to write ρpaq be-
cause the trace of TrpP´1MP q “ TrpPP´1Mq “ TrpMq.

Example 2.2.2. If pV, ρq is the G´representations associated to a G´set S, then
@g P G, we have χpgq “ number of elements of S fixed by g.

Remark 2.2.3. We have

• χV p1Aq “ TrpIdV q “ dimpV q.

• We have χV P A˚ “ HompA,Kq the dual space.

• If V » W , then χV “ χW because V,W are equal up to change of basis and
TrpPMP´1q “ TrpMq.

Notation: Let G be a finite group, then we say

FpGq “ KrGs
˚
p
bijective
ÐÑ tf : G Ñ Kuq.

Also we define

CFpGq “ tϕ P F pGq|ϕpgq “ ϕpg1
q, @g, g1 conjugate in Gu

p
bijective
ÐÑ tf : G Ñ K such that f is constant on conjugacy classuq.

Vector space of class functions on G.

Remark 2.2.4. We have FpGq “ KrGs˚ » KrGs as vector spaces and CFpGq »

ZpKrGsq˚ » ZpKrGsq as vector spaces.
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In fact, we have that χV P CFpGq.

Theorem 2.2.5. Let G be finite group, let V1, ¨ ¨ ¨ , VR be the irreps, the characters
χ1, ¨ ¨ ¨ , χR of the irreps form a basis of CFpGq.

Example 2.2.6. Let G “ S3, K “ C, denote V1 trivial representation, V2 sign repre-
sentation, V3 defining trivial, then we have the table

Character
χ1 χ2 χ3

C1 “ tIdu 1 1 2
C2 “ tp1, 2q, p2, 3q, p1, 3qu 1 -1 0
C3 “ tp1, 2, 3q, p3, 2, 1qu 1 1 -1

and we have χ3 “ number of fixed points ´1. Theorem 1.4.5 says χ1, χ2, χ3 form
a basis of CFpS3q ” C3 (i.e., columns are basis of C3).

Proof of Theorem 2.2.5. First we have dimpCFpGqq “ number of conjugacy classes
“ number of irreps “ R. This means that it suffices to show χ1, ¨ ¨ ¨ , χR are inde-
pendent. Now we show this claim.

Indeed, consider Pi “ Γ´1p0, ¨ ¨ ¨ , IdVi , ¨ ¨ ¨ , 0q idempotents. We have

χjpPiq “ TrpρjpPiqq “ TrpδijIdViq “ δij dimpVjq.

In particular, we have
řn
j“0 kjχj “ 0 thus @j,

ř

kjχjpPiq “ 0. Hence for any i, we
have ki “ 0.

Remark 2.2.7. Recall that tP1, ¨ ¨ ¨ , PRu forms a basis of ZpKrGsq. Proof shows that
t

χ1

dimpV1q
, ¨ ¨ ¨ , χR

dimpVRq
u is the dual basis tP ˚

1 ¨ ¨ ¨P ˚
Ru of ZpKrGsq˚ » CFpGq.

2.3 Frobenius Formula and Orthogonality

Notation:

• Let C1, ¨ ¨ ¨ ,CR be the conjugacy classes of G, let χ1, ¨ ¨ ¨ , χR be the characters
of irreps of G, let χipCjq “ χipgq for any g P Cj .

• For D1, ¨ ¨ ¨ ,Dk be conjugacy classes (Di P tC1, ¨ ¨ ¨ ,CRu), we denote

F pD1, ¨ ¨ ¨ ,Dkq “ cardinality of tpg1, ¨ ¨ ¨ , gkq|gi P Di, g1, ¨ ¨ ¨ , gk “ 1Gu.

Then we have the theorem:
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Theorem 2.3.1 (Frobenius Formula). For any k ě 1 and for any D1, ¨ ¨ ¨ ,Dk, we have

F pD1, ¨ ¨ ¨ ,Dkq “
|D1| ¨ ¨ ¨ |Dk|

|G|

R
ÿ

i“1

χipD1q ¨ ¨ ¨χipDkq

dimpViqk´2
.

Proof. Let Di “
ř

gPDi
g P ZpKrGsq, note that F pD1, ¨ ¨ ¨ ,Dnq “ coefficients of 1G

in D1 ¨ ¨ ¨Dk. Then observe that

χregpgq “

#

|G| if g P 1G,

0 otherwise (because gh ‰ h, @h P G)
.

Thus χregpxq “ |G| multiplies the coefficient of 1G in x. Hence F pD1, ¨ ¨ ¨ ,Dnq “
1

|G|
χregpD1 ¨ ¨ ¨Dkq. Moreover, Vreg »

À

dimpViqVi thus χreg “
ř

pViqχi. Therefore,
we have

F pD1, ¨ ¨ ¨ ,Dnq “
1

|G|

R
ÿ

i“1

dimpViqχipD1 ¨ ¨ ¨Dnq.

By fundamental isomorphism Γ : KrGs Ñ EndpViq, we have Dj P ZpKrGsq which
implies that for any i, ρipDjq “ kijIdVi for some kij P k. Moreover, χipDjq “

kij dimpViq thus we see

kij “
χipDjq

dimpViq
“

|Dj|χipDjq

dimpViq

ùñ @i, ρipD1 ¨ ¨ ¨Djq “ ρipD1q ¨ ¨ ¨ ρipDkq “

k
ź

j“1

p
DjχipDjqIdVi

dimpViq
q

ùñ @i, χipD1 ¨ ¨ ¨Djq “

śk
j“1 |Dj|χipDjq

dimpViqk´1

ùñ F pD1 ¨ ¨ ¨Dnq “
1

|G|

R
ÿ

i“1

śk
j“1 |Dj|χipDjq

dimpViqk´2
.

From now on we take K “ C.

Definition 2.3.2. We define an inner product x, y on FpGq “ KrGs˚ by such that
for all ϕ, ψ P FpGq, we have

xϕ, ψy “
1

|G|

ÿ

gPG

ϕpgqψpgq,

where ¨ is complex conjugate.
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Theorem 2.3.3 (Orthogonal Relations). Let χ1, ¨ ¨ ¨ , χR be the characters of irreps. We
have

(1). For all i, j, xχi, χjy “ δij . In other words, χ1, ¨ ¨ ¨ , χR forms an orthogonal basis of
CFpGq.

(2). For all i, j, we have
R

ÿ

k“1

χkpCiqχkpCjq “ δi,j
|G|

|Ci|
,

where C1, ¨ ¨ ¨ ,CR are the conjugacy classes.

Lemma 2.3.4. Let χ be a character of G, then we have

χpg´1
q “ χpgq, @g P G.

Proof. Exercise.

Proof of Theorem 2.3.3. For (2), we have

R
ÿ

k“1

χkpCiqχkpCjq “

R
ÿ

k“1

χkpCiqχkpC´1
j q “

|G|

|Ci||Cj|
F pCi,C

´1
j q

“
|G|

|Ci||Cj|
δij|Ci| “

|G|

|Ci|
δij.

For (1), let M “ p

?
|Ci|χjpCiq?

|G|
q, then we have

p2q ùñ M ¨ MT “ Id ùñ MT
¨ M “ Id

ùñ
1

|G|

ÿ

k

|Ck|χipCkqχjpCkq “ δij ðñ
1

|G|

ÿ

gPG

χipgqχjpgq “ δij.

Hence the corollary.

Corollary 2.3.5. Let V, V 1 be finite dimensional G´representations and let χ, χ1 be their
characters. Then we have

V » V 1
ðñ χ “ χ1.

Proof. (ùñ): If V » V 1, then there exists an invertible matrix P such that

@x P KrGs, ρ1
pxq “ P´1ρpxqP.

Hence

@x P KrGs, χ1
pxq “ Trpρ1

pxqq “ TrpP´1ρpxqP q “ Trpρpxqq “ χpxq.
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(ðù): Suppose χ “ χ1, we can decompose V, V 1 into irreps:

V »

r
à

i“1

miVi and V 1
»

r
à

i“1

m1
iVi.

This gives χ “
řr
i“1miχi “ χ “ χ1 “

řr
i“1m

1
iχi. Hence by Theorem 2.2.5, we

have mi “ m1
i for all i. Thus V » V 1.

Corollary 2.3.6. Suppose K “ C. Let V, V 1 be G´representations and let χ, χ1 be their
characters. Let χ1, ¨ ¨ ¨ , χr be the characters of the irreps V1, ¨ ¨ ¨ , Vr of G. Then

(a). The multiplicity mk of Vk in V is xχ, χky.

(b). We have xχ, χ1y “
řr
k“1mkm

1
k “ dimpHomGpV, V 1qq where we have mk,m

1
k mul-

tiplicities of Vk in V, V 1.

Proof. The characters χ1, χr are orthonormal for the inner product, so

(a). We have V »
Àr

i“1miVi ùñ χ “
řr
i“1miχi ùñ xχ, χky “ x

ř

imiχi, χky “

mk.

(b). We have xχ, χ1y “ x
ř

imiχi,
ř

jm
1
jχjy “

řr
k“1mkm

1
k “ dimpHomGpV, V 1qq

where the last equality is by the corollary of Schur’s Lemma.

Hence the corollary.

Exercise: Let G “ Sn and let V be the representation given by V “ Cn and
π ¨ ei “ eπpiq for all i in rns. Multiplicity of trivial representation in V “?

We see xχV , χtrivialy “ 1
n!

ř

πPSn
fixpπq “ average number of fixed points “ 1

where fixpπq is the number of fixed points of π.
Note that V is the sum of 2 irreps ðñ xχV , χV y “ 1

n!

ř

πPSn
fixpπq2 “ 2.

2.4 Restricted and Induced Representations

Definition 2.4.1. Let H be a subgroup of G. Any representation pV, ρq of G gives
a representation of H by taking the restriction ρ|H : H Ñ EndpV q. We denote by
VGÑH this restricted representation of H .

Remark 2.4.2. For an irreducible repres of G, the restriction may not be irre-
ducible.

Example 2.4.3. Irreps of symmetric group (not proved in this class).
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Recall conjugacy classes of Sn ðñ cyclic types ðñ “partitions of n” “ ways
of writing n as a sum of positive integers n “ n1 ` ¨ ¨ ¨ ` nk (with ni arranged in
weakly decreasing order) ðñ “Young diagram”,

.

Hence the number of irreps of Sn = number of partitions of n = Young dia-
grams with n boxes.

Fact: one can index the irreps of Sn by the Young diagram in such a way that
the set of irreps of Sn is Vλ, λ Young diagram of size n and

pVλqSnÑSn´1 “
à

µĂλ obtained by deleting one corner box

Vµ.

Corollary 2.4.4. We have dimpVλq “ number of paths from H to λ in the Young lattice.

Question: For H Ÿ G, how can we get a repres of G from a repres of H?
Reminder: We have G acts on G{H by left-translation: If G{H “

ta1H, ¨ ¨ ¨ , akHu, this action is

α : G ÝÑ PermpG{Hq,

αpgq : aiH ÞÝÑ gaiH.

This action gives a representation pW, τq where the matrices τpgq “ pti,jqi,jPrks are
permutation matrices: ti,j “ 1 if gajH “ aiH and 0 otherwise.

Definition 2.4.5. Let H be a subgroup of G. Let a1, ¨ ¨ ¨ , ak in G be representa-
tives of left-cosets: G{H “ ta1H, ¨ ¨ ¨ , akHu. Let pV, ρq be a H´representation.
The induced representation pVHÑG, ρHÑGq (for our choice a1, ¨ ¨ ¨ , ak) is the
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G´representation with matrices

@g P G, ρHÑGpgq “

¨

˚

˝

M1,1pgq M1,kpgq

. . .
Mk,1pgq Mk,kpgq

˛

‹

‚

,

where Mi,jpgq “

#

ρpa´1
i gajq if gajH “ aiHp equivalently a´1

i gaj P Hq,

0 otherwise.

Lemma 2.4.6. We have the following:

(1). The tuple pVHÑG, ρHÑGq is indeed a representation: this means that for all g, g1, we
have ρHÑGpgg1q “ ρHÑGpgq ˝ ρHÑGpg1q.

(2). Changing the representatives ai gives an isomorphic representation.

(3). The character χHÑG of VHÑG is related to the character χ of V as follows:

@g P G,χHÑGpgq “
1

|H|

ÿ

fPG|f´1gfPH

χpf´1gfq.

Proof. We prove (1), (3), and (2) respectively.

(1). Multiplying by blocks we get

ρHÑGpgqρHÑGpg1
q “

¨

˚

˚

˝

Bi,j

˛

‹

‹

‚

, Bi,j “

k
ÿ

d“1

Mi,dpgqMd,jpg
1
q,

with Bi,j “ 0 unless there exists d in rks such that g1ajH “ adH and gadH “

aiH (and this occurs if and only if gg1ajH “ aiH). In this case, we have

Bi,j “ Mi,dpgqMd,jpg
1
q “ ρpa´1

i gadqρpa´1
d g1ajq “ ρpa´1

i gg1ajq “ Mi,jpgg
1
q.

Hence ρHÑGpgq ˝ ρHÑGpg1q “ ρHÑGpgg1q.

(3). We have

χHÑGpgq “
ÿ

i|a´1
i gaiPH

χpa´1
i gaiq “

ÿ

i|a´1
i gaiPH

1

|H|

ÿ

hPH

χph´1a´1
i gaijq

“
1

|H|

ÿ

fPG|f´1gfPH

χpf´1gfq,

where f “ aih and the last equality is from if aH “ bH, then a´1ga P H if and
only if b´1gb P H .
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(2). By (3), character does not depend on a1, ¨ ¨ ¨ , ak. Since a different choice of
a1, ¨ ¨ ¨ , ak gives the same character, the corresponding repres are isomorphic (by
a previous corollary).

Corollary 2.4.7 (Frobenius Reciprocity). Suppose K “ C, let H be a subgroup of G,
let V be a representation of H with character χ and let V 1 be a representation of G with
character χ1. Then we have

xχHÑG, χ
1
y “ xχ, χ1

GÑHy (inner product of CrGs
˚ and CrHs

˚
q.

Proof. We have

xχHÑG, χ
1
y “

1

|G|

ÿ

gPG

χHÑGpgqχ1pgq “
1

|G||H|

ÿ

g,fPG|f´1gfPH

χpf´1gfqχ1pgq

“
1

|G||H|

ÿ

g,fPG|f´1gfPH

χpf´1gfqχ1pf´1gfq,

hence

xχHÑG, χ
1
y “

1

|G||H|

ÿ

hPH

ÿ

g,fPG|f´1gf“h

χphqχ1phq “
1

|G||H|

ÿ

hPH

|G|χphqχ1phq

“ xχ, χ1
GÑHy.

Hence the proof.

Remark 2.4.8. For V, V 1 irreps of H and G respectively, this means that (via a
previous corollary) multiplicity of V 1 in VHÑG “ multiplicity of V in V 1

HÑG.

Example 2.4.9. Consider Sn´1 Ÿ Sn. For any Young diagram λ we have

pVλqSn´1ÑSn “
à

µĄλ obtained by adding one box

Vµ.



3
Finite Dimensional Algebras

3.1 Fundamental Isomorphism

Throughout this subsection, we assume k algebraically closed, A is finite di-
mensional K´algebra (we do not have the Matschke Lemma).

Theorem 3.1.1 (Density Theorem). Let pV1, ρ1q, ¨ ¨ ¨ , pVR, ρRq be non-isomorphic irreps
of A, that is, for v P Vi, A ¨ v “ Vi. Let

Γ : A ÝÑ

R
à

i“1

EndpViq,

x ÞÝÑ pρ1pxq, ¨ ¨ ¨ , ρRpxqq.

Then Γ is a surjective algebra homomorphism.

Lemma 3.1.2. Any subrepresentations of a sum of irreps is isomorphic to a sum of irreps.

Proof. (1). Claim: Let ϕ : V Ñ W be representation homomorphism such that
there exists ψ : W Ñ V representation homomorphism and ϕ ˝ ψ “ IdW .
Then V » kerϕ ‘ Imϕ. Proof of claim as exercise.

(2). Let W be subrepresentations of V “
À

miVi, and Vi are irreps, we show
W » sum of Vi by induction on

ř

mi.

Base case
ř

mi “ 0 trivial.

Induction step: Let W ϕ
ãÑ

À

miVi inclusion map, let U be irreducible sub-
representation of W , then ϕ decomposes: there exists ϕk,j : W Ñ Vk, k P

rRs, j P rmks representation homomorphism such that

ϕpxq “ pϕk,jpxqqkPrRs,jPrmks.

24
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We have ϕk,j|U : U Ñ Vk is 0 as isomorphism since U, Vk irreducible.
Also there exists k, j such that ϕk,j|U is isomorphism. Thus U » Vk and
there exists ψ :“ pϕk,j|Uq´1 such that ϕk,j ˝ ψ “ IdVk . By previous choice
W » Impϕk,jq ‘ kerpϕk,jq where the first component is Vk and the second
component is isomorphic to

À

m1
iVi where m1

k “ mk ´ 1,mi “ mi, @i ‰ k.
By the induction hypothesis, kerpϕk,jq » sum of irreps and hence W » sum
of irreps.

Hence the lemma.

Proof of Theorem 3.1.1. Let nk “ dimpVkq, let pek,1, ¨ ¨ ¨ , ek,nk
q, let

ψ : A ÝÑ
à

mkVk,

x ÞÝÑ px ¨ ek,jqkPrRs,jPrnks.

Note that x ¨ ek,j “ ρkpxqpek,jq “ “j´th column of ρkpxq”. Therefore Γ surjective
ðñ ψ surjective. Now we want to show ψ is surjective.

Since Imψ Ď
À

nkVk, Imψ »
À

nkVk by lemma. To prove surjectivity, it suf-
fices to show mk “ nk for all k (by dimension argument). Consider the map

ϕ :
à

mkVk » Impψq ãÑ
à

nkVk,

where ϕ from the first term on the left to the last term with ϕ being representation
homomorphism. Decomposition of homomorphism ϕ : there is ϕl,i,k,j : Vl Ñ Vk
with

ϕppV ql,iqlPrRs,iPrmls “ p
ÿ

l,i

ϕl,i,k,jpVl,iqqkPrRs,jPrmks.

By Schur Lemma, ϕl,i,k,j “

#

0 if l ‰ k,

c
pkq

ij IdVk if l “ k, c
pkq

ij P k.

Note that pek,jqkPrRs,jPrnks “ ψp1Aq P Impϕq. Therefore we have for all k P

rRs, DVk,1, ¨ ¨ ¨ , Vk,mk
P Vk such that

´

c
paq

ij

¯

¨

˚

˚

˚

˝

Vk,1
Vk,2

...
Vk,mk

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

ek,1
ek,2

...
ek,mk

˛

‹

‹

‹

‚

.

Hence Vk,1, ¨ ¨ ¨ , Vk,mk
generates the basis ek,1, ¨ ¨ ¨ , ek,nk

. Thereforemk ě nk, @k.

Definition 3.1.3. Let radpAq “ tx P A|@pV, ρq irreps ρpxq “ 0u be the Jacobson
radical of A.
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Theorem 3.1.4 (Fundamental Isomorphism). Let A be finite dimensional algebra over
algebraically closed field k. There are finitely many (non-isomorphic) irreps of A. They
are pV1, ρ1q, ¨ ¨ ¨ , pVR, ρRq and

Γ : A{radpAq ÝÑ
à

EndpViq,

x ` radpAq ÞÝÑ pρ1pxq, ¨ ¨ ¨ , ρRpxqq,

is isomorphism of algebra.

Proof. We have

• By density theorem, if V1, ¨ ¨ ¨ , Vk non-isomorphism irreps of A, then A Ñ
À

EndpViq is surjective. Hence dimpAq ě
ř

dimp
À

EndpViqq ě k. Hence at
most dimpAq irreps.

• By density theorem, the map

Λ : A ÝÑ
à

EndpViq,

x ÞÝÑ pρ1pxq, ¨ ¨ ¨ , ρRpxqq

is surjective. Hence by basis isomorphism, A{ kerpΛq »
À

EndpViq.

• We have ker Γ “ ta P A|ρ1paq “ 0, ¨ ¨ ¨ , ρRpaqu “ radpAq.

Hence the theorem.

Theorem 3.1.5. Let A be finite dimensional algebra, then

radpAq
p1q
“ tx P A|Dn ą 0, pxq

n
“ t0uu

p2q
“

č

M maximized left-ideal of A

M,

where pxq is two-sided ideal generated by x. Then I ˆ J “ t
řk
i“1 xy, xi P I, yi P Ju

product of ideal which implies In “ t
řk
i“1 xi1, ¨ ¨ ¨ , xim|xi,k P Iu.

Lemma 3.1.6. For any finite dimensional representationsA, there is filtration 0 “ V0 Ď

V1 Ď ¨ ¨ ¨ Ď Vn “ V subrepresentations such that Vi{Vi´1 is irreducible.

Proof. Induction on dimpV q.
Let V1 be an irreducible subrepresentation, by induction hypothesis V {V1 has

a filtration, then

U0 Ă U1 Ă ¨ ¨ ¨ Ă Uk “ V {V1 ¨ ¨ ¨Vi{Vi´1 irreducible.

By basic isomorphism,

tsubrepresentation of V {V1u
bijection
ÐÑ tsubrepresentations of V containing V1u,



3.2. SEMISIMPLICITY 27

W {W1 ÐÝ W.

Hence there exists W0 Ď W1 Ď ¨ ¨ ¨ Ď Wk Ď V such that Ui “
Wi

V1
and Wi{Wi´1 »

pWi{V1q{pWi´1{V1q “ Ui{Ui´1 irreducible. Thus 0 Ď W0 “ V1 Ď W1 Ď ¨ ¨ ¨ Ď Wk “

V is a filtration for V .

Proof of Theorem 3.1.5. For part (1):
Suppose x R radpAq, then there is pV, ρq irreps such that ρpxq ‰ 0. Since pxq¨V is

a nondegenrate subrepresentations, we get pxq ¨ V “ V . Hence for all m, pxqmV “

V implies that for all m, pxqm ‰ 0.
Let 0 “ V0 Ď V1 Ď ¨ ¨ ¨ Ď Vm “ Vreg subrepresentation such that Vi{Vi´1 ir-

reducible. For all x P radpAq, for all i, we have xVi{Vi´1 “ 0 hence xVi Ď Vi´1.
Therefore for all x P pradpAqqm, xVm Ď V0 “ 0. Hence pradpAqqm “ 0 and
@x P radpAq, pxqm Ď pradpAqqm “ 0 therefore x ¨ 1A “ 0 thus x “ 0.

For part (2):
Remark: We have I is left ideal of A if and only if I is subrepresentation of

Vreg “ A. Also M is maximal left ideal of A if and only if Vreg{M are irreducible
representations.

pĎ:q Let x P radpAq. By (1), there is m, pxqm “ 0 hence for all a P A, paxqm “ 0.
Therefore @a P A, 1 ´ ax is invertible become p1 ´ axqp1 ` ax ` paxq2 ` ¨ ¨ ¨ `

paxqm´1q “ 1 ´ paxqm “ 1. Hence x P
Ş

M max left ideal
M . Indeed if x R M on maximal

left ideal, then Ax`M “ A where Ax is left ideal. Hence Dm P M,a P A such that
ax ` m “ 1A. Therefore m “ 1 ´ ax invertible by above and contradicts M ‰ A.

pĚ:q Homework: x P
Ş

M ùñ x P
Ş

i,vPVi

Annρipvq “ radpAq.

3.2 Semisimplicity

Definition 3.2.1. An A´representation is semisimple if it is isomorphic to a sum
of irreducible.

Example 3.2.2. If A “ KrGs is a group algebra over k of charpkq ∤ |G|. Then any
A´representation is semisimple by Matschke lemma.

Theorem 3.2.3. Let k be algebraically closed field, and let A be a finite dimensional
K´algebra, the following are equivalent:

(1). Any finite dimensional A´representation is semisimple (= decomposible into ir-
reps);

(2). The regular representation is semisimple;

(3). The radical radpAq “ 0;
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(4). There is finite dimensional vector spaces V1, ¨ ¨ ¨ , VR such that A »
ÀR

i“1 EndpViq
as algebra.

We call A semisimple in this case. In this case, V1, ¨ ¨ ¨ , VR can be given the structure of
A´representations as follows: if

Γ : A ÝÑ
à

EndpViq,

a ÞÝÑ pρ1paq, ¨ ¨ ¨ , ρRpaqq,

is isomorphism of algebra, then pVi, ρiq is A´representation for all i. Moreover

(a). The spaces V1, ¨ ¨ ¨ , VR be all the irreps of A up to isomorphism.

(b). The regular Vreg »
ÀR

i“1 dimpViqVi as A´representations.

Proof. p1q ùñ p2q is trivial.
p2q ùñ p3q: suppose Vreg »

À

miVi are irreps, there is 1a P Vreg implies that
there is v “ pvi,jqiPrns,jPrmis P

À

miVi such that for all a P Azt0u, a ¨ v ‰ 0 since
a ¨ 1A ‰ 0. Let a P Azt0u and let a ¨ v “ pa ¨ Vijq, there is i, j, a ¨ Vij ‰ 0 ùñ

ρipaqpVijq ‰ 0 ùñ ρipaq ‰ a ùñ a R radpAq.
p3q ùñ p4q: Proved as corollary of the density theorem.
It remains to show p4q ùñ p1q, paq, pbq.
p4q ùñ pbq: Sketch: The representation Vreg

Γ
»

À

EndpViq »
À

dimpViqVi. We
give EndpViq the structure of A´representations as follows. For any a P A, for
all f P EndpViq, we have a ¨ f “ ρipaq ˝ f . The map Γ is a homomorphism of A
representation since

a ¨ Γpxq “ apρ1pxq, ¨ ¨ ¨ , ρRpxqq “ paρ1pxq, ¨ ¨ ¨ , aρRpxqq

“ pρ1paq ˝ ρ1pxq, ¨ ¨ ¨ , ρRpaq ˝ ρRpxqq.

Therefore

Γpa ¨ xq “ pρ1paxq, ¨ ¨ ¨ , ρRpaxqq “ pρ1paq ˝ ρ1pxq, ¨ ¨ ¨ , ρ1paq ˝ ρRpxqq.

Hence Vreg
Γ
»

À

EndpViq. Hence EndpV1q » dimpViqVi. Indeed, if te1, ¨ ¨ ¨ , edu is a
basis of Vi, then an isomorphism is given by

ρ : EndpV1q ÝÑ dimpViqVi,

f ÞÝÑ pfpe1q, ¨ ¨ ¨ , fpedqq.

(check this!) Lastly Vi is irreducible since for all v P Vizt0u we haveA¨v “ EndpViq¨

V “ Vi.
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p4q ùñ p1q ` paq: It actually suffices to show that any finite dimensional
A´representation is isomorphic to subrepresentation of mVreg for some m (since
subrepresentations of sum of irreps is isomorphic to sum of irreps).

We give the dual vector space A˚ the structure of A´representations: for all
a P A, for all f P A˚, we have

a ¨ f “

#

A Ñ K

x Ñ fpxaq
.

[Check A˚ is an A´representation].
We have the following claim:
Claim 1: Any A´representations pV, ρq of dim d is isomorphic to a subrepre-

sentation of aA˚.
Claim 2: We have p4q ùñ A » A˚ as representations where the left hand side

is Vreg.
Proof of Claim 1: For f P V ˚ and v P V we define

f v : A ÝÑ k,

x ÞÝÑ fpx ¨ vq.

Clearly f v P A˚, moreover fav “ af v (favpxq “ fpxavq “ paf vqpxq). Hence

V ÝÑ A˚,

v ÞÝÑ f v,

is a homomorphism of A representations. Let f1, ¨ ¨ ¨ , fd be a basis of V ˚, by above

ϕ ¨ v ÝÑ dA˚,

v ÞÝÑ pf v1 , ¨ ¨ ¨ , f vd q,

is A´representations homomorphism. Moreover ϕ is injective since ϕpvq “ 0 ùñ

@i, f v1 p1Aq “ 0 ùñ @i, fipvq “ 0 ùñ v “ 0. Hence V » Impϕq Ď dA˚.
Proof of Claim 2: Let A “

À

EndpViq, let

ϕ : A ÝÑ A˚,

pρ1, ¨ ¨ ¨ , ρRq “ a ÞÝÑ p
A Ñ K

pf1, ¨ ¨ ¨ , fRq ÞÑ
řR
i“1 TRpfi ˝ ρiq

q.

This is isomorphism of A´representations. Thus we see homomorphism (check),
dimpAq “ dimpA˚q checked, how about injectivity?

We see ϕ is injective because ϕpρ1, ¨ ¨ ¨ , ρRq “ 0 implies that all the coefficients
in the matrices of ρ1, ¨ ¨ ¨ , ρR are 0. Hence ρ1, ¨ ¨ ¨ , ρR “ 0.
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Theorem 3.2.4 (Wedderburn’s Theorem). We have

• Radical radpAq “ 0 implies that A »
À

MatMi
pkq if k is algebraically closed.

• Radical radpAq “ 0 implies that A »
À

MatMi
pDiq division algebra over k in

general.



Part II

Commutative Algebra
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We are studying the correspondence

Geometry ÐÑ Algebra,

ppaq “ 0 ÐÑ p P Crx1, ¨ ¨ ¨ , xns, a P Cn,

a belong to locus of 0 of p ÐÑ p belong to the ideal kerppV Cq.

Throughout we assume all rings are commutative unless otherwise stated.



4
Preliminaries on Ideals

4.1 Basic Operations

Definition 4.1.1. Let R be a commutative ring, I Ď R is ideal if it is closed under
`,´ and RI Ď I .

Remark 4.1.2. If I, J are ideals, then I X J is an ideal.

Definition 4.1.3. For S Ď R, we say pSq “
Ş

SĎI ideal
I is the ideal generated by S.

Remark 4.1.4. Ideal I ‰ R if and only if I does not contain a unit (invertible
element).

Definition 4.1.5. Let I, J ideals, then we define the sum of ideals I`J “ tx`y|x P

I, y P Ju “ pI Y Jq.
We define the product of ideals IJ “ ptxy|x P I, y P Juq “ t

řn
i“1 xiyi|m ě

0, xi P I, yi P Iu.
We define the ideal quotient pI : Jq “ tr P R|rJ Ď Iu.

Definition 4.1.6. We say ideal I is prime if RzI is closed under multiplication
(@x1, ¨ ¨ ¨ , xn R I ùñ x1 ¨ ¨ ¨ xn R I).

Remark 4.1.7. Let x R I prime ideal, for all m we have xm R I .

Definition 4.1.8. Let I Ď R be ideal, the radical of I is rpIq “ tx P R|Dm ą 0, xm P

Iu. The nilradical of R is rp0q “ tx P R|Dm ą 0, xm “ 0u.

Example 4.1.9. TakeR “ Z, I “ pmq, then we have rpIq “ pp1 ¨ ¨ ¨ pkq where p1 ¨ ¨ ¨ pk
be distinct primes of m “

Şk
i“1ppiq.

Proposition 4.1.10. For all I Ď R ideal, we have rpIq “
Ş

IĎP prime P (in particular,
rpIq is an ideal).

33



4.2. EXTENSION AND CONTRACTION OF IDEALS 34

Proof. pĎq : Consider x P rpIq we have Dm ą 0, xm P I ùñ @I Ď P prime, xm P

P ùñ @I Ď P prime, x P P ùñ x P
Ş

IĎP prime P .
pĚq : Let x R rpIq, let Ω “ tJ Ď R|I Ď J, J X tx, x2, x3, ¨ ¨ ¨ u “ Hu. Note I P Ω

hence Ω ‰ H. Let P be a maximal element of Ω for inclusion (such a maximal
element exists by Zorn’s Lemma). We claim that P is prime.

Let a, b R P ùñ P ` paq, P ` pbq R Ω ùñ Dm,n ą 0 such that xm P P ` paq, xn P

P ` pbq ùñ xm`n P pP ` paqqpP ` pbqq “ P ` pabq ùñ P ` pabq R Ω ùñ ab R P .
Therefore x P P ùñ x P

Ş

IĎQ prime Q.

Lemma 4.1.11. We have

• I Ď rpIq,

• rprpIqq “ rpIq,

• rpIq “ R ðñ I “ R,

• rpIJq “ rpI X Jq “ rpIq X rpJq,

• I prime ùñ rpIq “ I ùñ @m ą 0, rpImq “ I .

Proof. Easy check.

4.2 Extension and Contraction of Ideals

Definition 4.2.1. Let f : R Ñ T be a ring homomorphism, then we define

• For I ideal of R, the f´extension of I is Ie “ pfpIqq the ideal generated by
fpxq, x P I .

• For J ideal of T , the f´contraction of J is J c “ f´1pJq “ tx P I|fpxq P Ju.

Remark 4.2.2. We have J c is an ideal since fpxq, fpyq P J ùñ fpx` yq P J, fprxq P

J . This gives
tideals of Ru

e
é
c

tideals of T u.

Remark 4.2.3. We have J Ă T prime ùñ J c prime. Note that I Ď R prime does
not imply Ie is prime (fpxq, fpyq R J ùñ fpxyq “ fpxqfpyq P J).

Example 4.2.4 (Example of I prime, Ie not prime.). Let

f : Z ÝÑ Zris,

n ÞÝÑ n,

and let I “ 5Z. We see I prime but Ie “ 5Zris not prime since p2 ` iqp2 ´ iq “ 5
since the left hand side terms are not in Ie and the right hand side term is in Ie.
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Definition 4.2.5. Given f : R Ñ T , and ideal I of R is called contracted if there is
J , such that I “ J c. Similarly, an ideal J of T is called extended if there is I such
that J “ Ie.

Lemma 4.2.6. We have
@I Ď R, Iec Ě I,

@J Ď T, J ce Ď J.

Further we have
@I Ď R, Iece “ Ie,

@J Ď T, J cec “ J c.

Proof. First two statements are routine check. For the last two, we see Iece “

pIeqce Ď Ie. Also we have Iece “ pIecqe Ě Ie. Same for J .

Corollary 4.2.7. We have that for all I Ď R contracted Iec “ I . For all J Ď R extended
J ce “ J . Hence

tI Ď R contractedu
e

é
c

tJ Ď T extendedu

are bijections.

Lemma 4.2.8. Let f : R Ñ T ring homomorphism, let I1, I2 ideals of R and J1, J2 ideals
of T , we have

(1). pI1 ` I2q
e “ Ie1 ` Ie2 ,

(2). pI1I2q
e “ Ie1I

e
2 ,

(3). pI1 X I2q
e Ď Ie1 X Ie2 ,

(4). rpIqe Ď rpIeq,

(5). pI1 : I2qe Ď pIe1 : Ie2q.

On the other hand,

(1). pJ1 ` J2qc Ě J c1 ` J c2 ,

(2). pJ1J2q
c Ě J c1J

c
2 ,

(3). pJ1 X J2qc “ J c1 X J c2 ,

(4). rpJqc “ rpJ cq,

(5). pJ1 : J2q
c “ pJe1 : Je2q.

Proof. Routine check.
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Proposition 4.2.9. Let f : R Ñ T be ring homomorphism. Then I Ď R is prime and

contracted
p1q

ðñ I contraction of a prime ideal. Also J Ď T prime and extended
p2q

ùñ J
extension of a prime ideal.

Proof. p
p1q

ðùq : I “ J c with J prime implies that I prime as seen above.

p
p2q

ùñq : J extended ùñ pJ cqe “ J . Then J prime implies that J c prime hence J
is extension of prime.

p
p1q

ùñq : To be completed.

Corollary 4.2.10. If f : R Ñ T homomorphism such that every ideal of T is extended.
Then

tcontracted ideals of Ru
e

é
c

tideals of T u

are bijective and
tprime ideals of Ru

e
é
c

tprime ideals of T u.

Example 4.2.11 (Example of quotient map). Let K Ď R be an ideal of R and let

f : R ÝÑ R{K,

x ÞÝÑ x ` K

be the quotient map. Then we have

(1). For all I Ď R, Ie “ ptx ` K, x P Iuq “ pI ` Kq{K.

(2). Every ideal ofR{K is extended. Ideal J ofR{K is Ie “ I{K for I “
Ť

x`KPJ

x`

K.

(3). The contracted ideals of R are the ideals of R containing K. For K Ď I Ď R,
we have Ie “ I{K.

Hence I e
ÝÑ I{K gives a bijection, we see

tideals I,K Ď I Ď Ru
bijection
ÝÑ tideals of R{Ku,

tprime ideals I,K Ď I Ď Ru
bijection
ÝÑ tprime ideals of R{Ku.



5
Rings of Fractions

5.1 Definitions and Universal Properties

Let R be a commutative ring.

Definition 5.1.1. We call S Ď R a multiplicative set if 1 P S, 0 R S, and S is closed
under multiplication.

Definition 5.1.2. Let S Ď R be a multiplicative set. The ring of fraction is

S´1R “ t
x

s
|x P R, s P Su{ „,

where x
s

„
y
t

if Du P S such that uxt “ usy. We can see x
s

`
y
t

“
xt`ys
st

and x
s

ˆ
y
t

“
xy
st

well defined (with respected to equivalence relation).

Proposition 5.1.3. The data pS´1R,`,ˆ, 0
1
, 1
1
q is a ring. The map

ϵ : R ÝÑ S´1R,

x ÞÝÑ
x

1
,

is a ring homomorphism, which we call the “fraction map”.

Notation: The set of units (invertible elements for multiplication) in a ring R
is denoted by UpRq.

Remark 5.1.4. The image of map ϵpSq “ t s
1
, s P Su Ď UpS´1Rq.

Proposition 5.1.5 (Universal Property). Let S Ď R as a multiplicative set. Then

37
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1. If ϕ : R Ñ T is a ring homomorphism such that ϕpSq “ UpT q, then there exists
a unique rϕ : S´1R Ñ T ring homomorphism such that ϕ “ rϕ ˝ ϵ such that the
diagram

R T

S´1R

ϵ

@ϕ

D!rϕ

commutes.

2. The ring S´1R is uniquely determined by this property.

5.2 Ideal Correspondence for the Fraction Map

Notation: Let S Ď R be a multiplicative set. Let I Ď R, we denote S´1I “

tx
s
|x P I, s P Su.

Lemma 5.2.1. Let S Ď R be a multiplicative set, let

ϵ : R ÝÑ S´1R,

x ÞÝÑ
x

1
.

The extension and contraction of ideals through ϵ satisfy

(1). For all I Ď R, Ie “ S´1I

(2). Every ideal J of S´1R is ϵ´extended. The ideal J “ S´1I for some ideal I of R.

(3). We have S´1I ‰ S´1R if and only if I X S “ H.

Proof. (1). By definition, we have Ie “ ptx
1
, x P Iuq “ t

řn
k“1

xk
sk

|xk P I, sk P Su,
then by putting to same denominators we have tx

s
|x P I, s P Su “ S´1I .

(2). Let J be ideal of S´1R, let I “ tx P R|x
1

P Ju. Easy to check I is ideal of R
and J “ S´1I .

(3). We have

S´1I “ S´1R ðñ Dx P I, Ds P S,
x

s
“

1

1

ðñ Dx P I, Du, s P S, ux “ us

ðñ Dy P I, Dt P S, y “ t ðñ I X S ‰ H.

Hence the lemma.
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Proof of the one direction of Proposition 4.2.9 (1). Let f : R Ñ T be a ring homomor-
phism and let I Ď R be prime contracted ideal. Let S “ fpRzIq “ tfpxq|x P RzIu.
Then I contracted implies that Iec “ I from previous results. Then Ie X S “ H

(see picture).

Then I prime implies that S is a multiplicative set (indeed x, y P RzI implies that
fpxqfpyq “ fpxyq P S and 1 “ fp1q P S and 0 R S since Ie X S “ H.

Let
ϵ : T ÝÑ S´1T,

x ÞÝÑ
x

1
,

be the fraction map. The corresponding picture we will need is below.

Then IeXS “ H with the previous result implies that S´1Ie ‰ S´1T . This implies
that there exists a maximal ideal M of S´1T containing S´1Ie. Since any ideal of
S´1T is ϵ´extended, we haveM “ S´1P where P is the ϵ´contraction ofM . Then
M prime implies P prime. Further S´1P R S´1T implies that P X S “ H. Thus
Ie Ď P Ď T zS. Hence P c “ I which shows I is contraction of a prime ideal.

Proposition 5.2.2. Let S Ď R be multiplicative set and let

ϵ : R ÝÑ S´1R,
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x ÞÝÑ
x

1
,

then

(1). Every ideal of S´1R is extended and Ie “ S´1I .

(2). The contracted ideals are I Ď R such that x R I, s P S ùñ sx R I .

(3). The contracted prime ideals are I Ď R prime such that I X S “ H. Hence I e
ÞÝÑ

S´1I gives bijection

tI Ď R ideal s.t.@x R I,@s P S, sx R Iu
bij

ÐÑ tideal of S´1Ru,

tI Ď R prime ideal, I X S “ Hu
bij

ÐÑ tprime ideal of S´1Ru.

Proof. (1). Already proved.

(2). Ideal I contracted if and only if Iec “ I . Let x P R, then

x P Iec ðñ x P pS´1Iq
c

ðñ
x

1
P S´1I

ðñ Dy P I, s P S,
x

1
“
y

s
ðñ Dy P I, u, s P S, usx “ uy

ðñ Dt P S, tx P I.

Hence Iec “ tx P R|Dt P S, tx P Iu. We have I contracted if and only if
Iec “ I if and only if @x R I,@t P S, tx R I .

(3). Let I Ď R prime, then I X S “ H implies @x R I,@s P S, sx R I implies
that I is contracted. Also I X S R H implies that Ie “ S´1R implies that
Iec R I implies that I not contracted. Hence I prime is contracted if and only
if I X S “ H.

Hence the proposition is proved.

We have the bijection

tI Ď RzS prime idealu I ÞÑS´1I
ÝÑ tprime ideal of S´1Ru.

Notation: Let P Ď R be prime ideal, S “ RzP is a multiplicative set and we
denote RP “ S´1R. For I Ď R, we denote IP “ S´1I .

Remark 5.2.3. For P Ď R prime ideal, one has the following ideal correspon-
dences

tI prime ideal of R, I Ď P u
bij

ÐÑ tprime ideal of RP u,

tI prime ideal of R, I Ě P u
bij

ÐÑ tprime ideal of R{P u.
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Remark 5.2.4. For P Ď R prime ideal, by above bijections we see that PP is the
unique maximal ideal ofRP . HenceRP is a local ring andRP {PP is a field (residue
field of RP at PP ). The fraction map

R ÝÑ RP ,

x ÞÝÑ
x

s
,

is called localization at P .

Example 5.2.5. Let R “ CrX1, ¨ ¨ ¨ , Xns, P Ď R be prime ideal. Then the local ring
RP “ t

f
g
|f, g polynomial, g R P u Ď CpX1, ¨ ¨ ¨ , Xnq.

Let ZpP q “ tpx1, ¨ ¨ ¨ , xnq P Cn|@f P P, fpx1, ¨ ¨ ¨ , xnq “ 0u, this is the “algebraic
variety defined by P”. Then RP is the ring of rational functions which are defined
“almost everywhere” on ZpP q. We see PP is rational functions which are 0 on
ZpP q. The quotient RP {PP “identify rational functions if they have same value on
ZpP q.



6
Localizations of Modules

6.1 Definitions and Construction as “Extension of
Scalars”

Definition 6.1.1 (Module of Fraction). LetR be a ring and S Ď R be multiplicative
set. For a R´module M , we define the S´1R´module S´1M as follows

• The module S´1M “ tx
s
|x P M, s P Su{ „, where x

s
„

y
t

if Du P S, utx “ usy.

• The sum x
s

`
y
t

“
tx`sy
st

.

• The product r
s

¨ x
t

“ rx
st

where r
s

P S´1R and x
t

P S´1M .

Claim: The operations are well defined (with respect to equivalence relation)
and give S´1M the structure of S´1R´module (if x

s
„

y
t

then x
s

„ utx
uts

“
usy
uts

„
y
t
).

Proof. Exercise.

Remark 6.1.2. Note that the module S´1M is actually a pR, S´1Rq´bimodule
(with R´action, r x

s
:“ rx

s
). This is a restriction of scalar construction correspond-

ing to the homomorphism ϵ : R Ñ S´1R.

Proposition 6.1.3. We have S´1M » S´1R bRM as S´1R´module.

Remark 6.1.4. This shows that S´1M is an “extension of scalar” construction cor-
responding to ϵ : R Ñ S´1R.

Reminder: Let R, T be commutative rings, then

(1). The data M is a pR, T q´bimodule if it is R´module and T´module and for
all r P R, for all t P T , for all x P M , we have rptxq “ tprxq.
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(2). If f : R Ñ T is a ring homomorphism, then any T´module M is auto-
matically a pR, T q´bimodule when defining the action of R by @r P R, @x P

M, rx “ fprqx where the left hand side is r action and the right hand side is
t action. This is the restriction of scalars. Example: The map f “ ϵ fraction
operation.

(3). If M is R´module and N is pR, T q´bimodule, then the tensor M bR N is a
pR, T q´bimodule when defining the action of T by: @t P T,@x P M, @y P N ,
we have tpx b yq “ x b ptyq.

(4). If f : R Ñ T is a ring homomorphism, then T is a pR, T q´bimodule by
restriction of scalar. Hence for any R´module M , we have T bR M is a
pR, T q´bimodule. This is extension of scalars.

Example 6.1.5. The module S´1RbRM is a pR, S´1Rq´bimodule (using f “ ϵ the
fraction map).

Proposition 6.1.6. For all R´module M , then S´1M » S´1RbRM as S´1R´module
with isomorphism such that x

s
ÞÑ 1

s
b x.

Remark 6.1.7. If A » B as S´1R´module then A » B as pR, S´1Rq´module (by
restriction of scalars).

Proof. We prove by

• Consider the map
g : S´1M ÝÑ S´1R b M,

x

s
ÞÝÑ

1

s
b x,

is well defined (respects equivalence relation since @u P S, gpux
us

q “ 1
us

bux “
1
s

b x “ gpx
s
q) and is S´1R´bimodule.

• The map
f : S´1R ˆ M ÝÑ S´1M,

p
r

s
, xq ÞÝÑ

rx

s
,

isR´linear. Hence there exists f˚ : S´1RbM Ñ S´1M such that r
s

bx ÞÑ rx
s

.

• Easy to check that f˚g “ Id and gf˚ “ Id.

Hence f˚, g are isomorphisms of S´1R´module.

Corollary 6.1.8. Let M,N be R´modules, then
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(1). We have S´1M ‘S´1N » S´1pM ‘Nq as S´1R´module with isomorphism such
that px

s
, y
t
q ÞÑ

ptx,syq

st
.

(2). We have S´1M bS´1N » S´1pM bNq as S´1R´module with isomorphism such
that x

s
b

y
t

ÞÑ
xby
st

.

Proof. We have the isomorphisms

S´1M ‘ S´1N » pS´1R b Mq ‘ pS´1R b Nq » S´1R b pM ‘ Nq » S´1
pM ‘ Nq

given by the maps

p
x

s
,
y

t
q ÞÑ p

1

s
b x,

1

t
b yq “ p

1

st
b tx,

1

st
b syq ÞÑ

1

st
b ptx, syq ÞÑ

ptx, syq

st
.

Similarly consider the isomorphism

S´1M bS´1R S
´1N » S´1M bS´1R S

´1R bR N

» pS´1M bS´1R S
´1Rq bR N » S´1M bR pM bR Nq “ S´1RpM b Nq,

where the isomorphisms are given similarly (...).

Lemma 6.1.9. If A is R´module, B is pR, T q´bimodule and C is T´module then

pA bR Bq bT C » A bR pB bT Cq

with isomorphism such that

px b yq b z ÞÝÑ x b py b zq.

6.2 Flatness for Modules of Fractions

Reminder:

(1). A sequence of R´module homomorphism

¨ ¨ ¨
fi

ÝÑ Mi
fi`1
ÝÑ ¨ ¨ ¨

is exact if Impfiq “ kerpfi`1q. A short exact sequence is an exact sequence of
the form

0 ÝÑ A ÝÑ B ÝÑ C ÝÑ 0.

(2). A functor F : R ´ Mod Ñ R ´ Mod is called exact if for all sequence exact,
we have Fpseqq is exact.
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Remark 6.2.1. If F is exact, then

(1). If f is injective then Fpfq is injective (Using 0 Ñ A
f

ÝÑ B exact).

(2). If f surjective then Fpfq surjective (A f
ÝÑ B ÝÑ 0).

(3). We have FpM{Nq » FpMq{FpNq. Using 0 Ñ N Ñ M Ñ M{N Ñ 0 ex-
act hence 0 Ñ FpNq Ñ FpMq Ñ FpM{Nq Ñ 0 exact hence FpM{Nq »

FpMq{FpNq by first isomorphism theorem.

Lemma 6.2.2. The functor F is exact if and only if for all sequence short exact, Fpseqq is
short exact. That is, there exists Ni such that the diagram

¨ ¨ ¨ Mi Mi`1 Mi`2 ¨ ¨ ¨

Ni Ni`1

0 0

commutes.

Reminder (3). Let M be a R´module, we define FM : R ´ Mod Ñ R ´ Mod

by FMpAq “ M b A and FMpgq “ IdM b g. Module M is called flat if FM is exact.

Example 6.2.3. We have R is a flat R´module (deduced from the isomorphism
R b A » A).

Lemma 6.2.4. Let seq be A α
Ñ B

β
Ñ C Ñ 0 of R´module. Then for all R´module M ,

seq is exact implies that FMpseqq is exact.

Proof. Suppose seq is exact, then β is surjective and Impαq “ kerpβq. Want to show
IdM b β surjective and ImpId b αq “ kerpId b βq. Then we see

• For all x P M, for all c P C, we have x b c P ImpId b βq because there exists
b P B, βpbq “ c and xb c “ pIdb βqpxb bq. Pure tensors xb c generate M b c
hence Id b β, say.

• We have β ˝α ùñ pIdb βq ˝ pIdbαq “ pIdb pβ ˝αqq “ 0. Hence this implies
ImpId b αq Ď kerpId b βq.

• Let I “ ImpId b αq and let ϕ :M b B Ñ M b B{I be the quotient map. Let

f :M b B{I ÝÑ M b C,
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y ` I ÞÝÑ pId b βqpyq,

then f is well defined since I Ď kerpId b βq. Moreover Id b β “ f ˝ ϕ. In
order to prove kerpId b βq “ I it suffices to prove f is injective. Let

g :M ˆ C ÝÑ pM b Bq{I,

px, cq ÞÝÑ x b b ` I,

where b P β´1pCq. We see g is well defined: if b, b1 P β´1pCq then x b b ` I “

x b b1 ` I (because b ´ b1 P kerpβq “ Impαq ùñ x b b ´ x b b1 P I). Since g is
bilinear, there exists g˚ :M bC Ñ M bB{I such that xb c ÞÑ xb b` I with
b P β´1pCq. Moreover g˚˝f “ Id since g˚˝fpxbb`Iq “ g˚pxbβpbqq “ xbb`I .
Hence f is injective.

Hence If A Ñ B Ñ C Ñ 0 exact then @M,FMpA Ñ B Ñ C Ñ 0q is exact.

Corollary 6.2.5. A R´module M is flat (FM is exact) if and only if @α : A Ñ B
injective, the R´module homomorphism IdM b α is injective.

Proof. (ùñ): Clear: 0 ÝÑ A
α

ÝÑ B exact implies 0 ÝÑ M b A
IdMbα
ÝÑ M b B exact.

(ðù): Suppose for all α injective, IdM b α injective, then together with the
above property, we have FMpshortexactq is short exact. Hence FM is exact.

Corollary 6.2.6. For all S Ď R multiplicative set, the R´module S´1R is flat.

Proof. Let α : A Ñ B be an injective R´module homomorphism, want to show
kerpIdS´1R b αq “ 0. Any element of S´1R b A can be written as 1

s
b x, where

s P S, x P A. Then

IdS´1R b αp
1

s
b xq “ 0 ùñ

1

s
b αpaq “ 0

ùñ
αpaq

s
“ 0 in S´1A ùñ Du P S, uαpxq “ 0

ùñ Du P S, αpuxq “ 0

ùñ Du P S, ux “ 0 since α injective

ùñ
x

s
“ 0 in S´1B

ùñ
1

s
b x “ 0 by isomorphism.
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Notation: For S Ď R multiplicative set and α : A Ñ B R´module homomor-
phism, we define

S´1α : S´1A ÝÑ S´1B,

x

s
ÞÝÑ

αpxq

s
.

Remark 6.2.7. The isomorphism fA : S´1R b A Ñ S´1A “send” the homomor-
phisms IdS´1R b α to S´1α in the following sense:

S´1R b A S´1R b B

S´1A S´1B

IdS´1Rbα

» »

S´1α

.

Up to this “change of notation”, Corollary 6.2.6 says that for any exact sequence
of R´module

¨ ¨ ¨ ÝÑ Mi
fi

ÝÑ Mi`1
fi`1
ÝÑ ¨ ¨ ¨ .

The sequence

¨ ¨ ¨ ÝÑ S´1Mi
S´1fi
ÝÑ S´1Mi`1

S´1fi`1
ÝÑ ¨ ¨ ¨

is exact sequence of S´1R´modules.

Corollary 6.2.8. We have

• The map α is injective ùñ S´1α is injective,

• The map β surjective ùñ S´1β surjective,

• We have the isomorphism S´1pM{Nq » S´1M{S´1N with isomorphism x`N
s

Ø
x
s

` S´1N .

Proof. We see

• The sequence 0 Ñ A
α

Ñ B exact ùñ ¨ ¨ ¨ ,

• The sequence A β
Ñ B Ñ 0 exact ùñ ¨ ¨ ¨ ,

• The sequence 0 Ñ N Ñ M Ñ M{N Ñ 0 exact with the middle map
x ÞÑ x ` N . Also 0 Ñ S´1N Ñ S´1M Ñ S´1pM{Nq Ñ 0 exact with
the middle map x

s
ÞÑ x`N

s
. By first isomorphism theorem, this gives

S´1pM{Nq » S´1M{S´1N with the claimed isomorphism.

Hence the corollary.
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Remark 6.2.9. LetQ Ď P be ideals ofR, with P prime, by above corollary, we have
pR{QqP » RP {QP are isomorphic R´module. But in fact it implies pR{QqP {Q »

RP {QP as rings with the isomorphism x`Q
s`Q

Ø x
s

` QP .

Example 6.2.10. Homework 6...

Example 6.2.11. Extension of scalars preserve flatness. Let ϕ : R Ñ T ring homo-
morphism. If M is flat R´module, then T bRM is a flat T´module.

Corollary 6.2.12. The module M is a flat R´module implies that S´1M is a flat
S´1R´module.

6.3 Local Properties of Modules and Rings

Notation: For P Ď R prime ideal, we denote RP “ S´1R where S “ RzP . We
denote MP :“ S´1M for R´module M and αP :“ S´1α for homomorphism α.

Definition 6.3.1. A property of a ring/module/homomorphism is local if X has
property if and only if XP has property for all P Ď R prime.

Proposition 6.3.2. The following are equivalent:

(1). The module M “ 0,

(2). The module MP “ 0 for all P Ď R prime ideal,

(3). The module MP “ 0 for all P Ď R maximal ideal.

Proof. p1q ùñ p2q ùñ p3q are obvious.
For p3q ùñ p1q, letM be such thatMP “ 0 for all P maximal ideal. Suppose for

contradiction there exists x ‰ 0 inM , let Annpxq “ tr P R|rx “ 0u. This is a proper
ideal because it does not contain 1. This implies that DP maximal at Annpxq Ď P .
Then MP “ 0 ùñ x

1
“ 0 in MP ùñ Du R P, ux “ 0. Hence u P AnnpxqzP , a

contradiction.

Proposition 6.3.3. The following are equivalent for ϕ P HomRpA,Bq,

(1). The map ϕ is injective,

(2). The map ϕP is injective for all P Ď R prime ideal,

(3). The map ϕP is injective for all P Ď R maximal ideal.
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Proof. p1q ùñ p2q already proved.
p2q ùñ p3q is obvious.
p3q ùñ p1q: Suppose ϕP injective for all P maximal. Let M “ kerpϕq, the seq

that 0 Ñ M Ñ A
ϕ

Ñ B is exact implies that for all P maximal, the sequence
0 Ñ MP Ñ AP

ϕP
Ñ BP exact. The map ϕP is injective implies that @P maximal

ideal MP “ 0 which implies M “ 0 by proposition above.

Proposition 6.3.4. Same as the above proposition but with “surjective”.

Proposition 6.3.5. The following are equivalent for a R´module M ,

(1). The map M is flat R´module,

(2). The map MP is flat RP´module for all P Ď M prime,

(3). The map MP is flat RP´module for all P Ď M maximal.

Proof. p1q ùñ p2q: Already “proved” (extensions of scalars preserves flatness).
p2q ùñ p3q: Obvious.
p3q ùñ p1q: Sketch: Suppose MP is flat for all P maximal, want to show for

all ϕ injective, the map IdM b ϕ is injective. For all P, IdMP
b ϕP injective. Also

IdMP
b ϕP » pIdM b ϕqP via isomorphism implies pIdM b ϕqP is injective for all P .

This implies that IdM b ϕ is injective.



7
Noetherian Rings, Noetherian Modules and

Hilbert’s Nullstellensatz

7.1 Closure Property for Noetherian

Reminder: Let M be a R´module, the following are equivalent:

• Any strictly increasing sequence of submodule is finite,

• Any submodule is finitely generated.

If these property hold, then M is called Noetherian.

Definition 7.1.1. A ring R is Noetherian if it is Noetherian as R´module. That is
to say

(1). Any strictly increasing sequence of ideals is finitely generated.

(2). Any ideal is finitely generated.

Proposition 7.1.2. Let M be a R´module, and N Ď M submodule, then M is Noethe-
rian if and only if N and M{N are Noetherian.

Proof. pùñq: The submodule of N and M{N are in bijection with subsets of sub-
modules of M , hence no infinite strictly increasing sequence.

pðùq: Suppose N and M{N are Noetherian, let P Ď M be submodule, then
P {pP X Nq » pP ` Nq{N is finitely generated and P X N is finitely generated
(generators x1 ` P X N, ¨ ¨ ¨ , xk ` P X N and generators y1, ¨ ¨ ¨ , yl). That is P is
finitely generated (generators x1, ¨ ¨ ¨ , xk, y1, ¨ ¨ ¨ , yl).

Corollary 7.1.3. The module M1,M2 are Noetherian if and only if M1 ‘ M2 is Noethe-
rian.
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Proof. Let ĂM1 “ tpx, 0q, x P M1u Ď M1 ‘ M2. Then ĂM1 » M1 and pM1 ‘ M2q{M1 »

M2. Apply previous prop to M “ M1 ‘ M2 and N “ ĂM1.

Corollary 7.1.4. If R is Noetherian, then M is Noetherian R´module if and only if M
is finitely generated R´module.

Proof. pðùq : Obvious.
pùñq : If M is finitely generated, then M » Rk{N for some N Ď Rk. Moreover,

Rk is Noetherian by Corollary 7.1.3.

Theorem 7.1.5 (Hilbert’s Basis Theorem). If R is Noetherian ring, then for any n, we
have RrX1, ¨ ¨ ¨ , Xns is Noetherian ring.

Proof. It suffices to show R is Noetherian implies RrXs is Noetherian. Let R be
Noetherian, let I Ď RrXs be an ideal, we want to show I is finitely generated.

Suppose it is not, let P0 “ 0 and for all j ą 0, let Pj P IzpP0, ¨ ¨ ¨ , Pj´1q such that
Pj is of minimal degree in this set (note that degpPjq is weakly increasing).

Let aj be the leading coefficient of Pj , since RrXs is Noetherian, it has an infi-
nite increasing chain of ideals. There exists k ą 0, ak P pa1, ¨ ¨ ¨ , ak´1q, hence ak “
řk´1
j“1 rjaj, rj P R. Let P “ Pk´

řk´1
j“1 rjX

degpPkq´degpPjqPj , then P P IzpP0, ¨ ¨ ¨ , Pk´1q,
and the degree degpP q ă degpPkq. This contradicts the choice of Pk.

Recall that T is a finitely generated R´algebra if there is x1, ¨ ¨ ¨ , xn P T such
that any t P T can be written as a polynomial in x1, ¨ ¨ ¨ , xn with coefficients in R.
Equivalently, there is surjective R´algebra homomorphism from RrX1, ¨ ¨ ¨ , Xns

to T .

Corollary 7.1.6. If R is a Noetherian ring, and T is a finitely generated R´algebra, then
T is a Noetherian ring.

Proof. The algebra T is the image of Noetherian ringRrX1, ¨ ¨ ¨ , Xns hence Noethe-
rian (quotient of Noetherian is Noetherian).

7.2 Hilbert’s Nullstellensatz

Theorem 7.2.1 (Hilbert’s Nullstellensatz). Let K be algebraically closed field, let R “

KrX1, ¨ ¨ ¨ , Xns and let I Ď R ideal and let ZpIq “ tx P Kn|@g P I, gpxq “ 0u. For
polynomial f , we have that fpxq “ 0, @x P ZpIq if and only if f P rpIq.

Example 7.2.2. Let I “ pX2
1 , X2q, ZpIq “ tp0, 0qu. The theorem tells us fpp0, 0qq “ 0

if and only if f P rpIq “ pX1, X2q.

Lemma 7.2.3 (Zariski’s Lemma). Let K Ď E be a field extension, if E is finitely gen-
erated K´algebra, then E is finite dimensional (hence algebraic) over K.
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Proof of Theorem 7.2.1, “Hilbert’s Nullstellensatz”. pðùq : We have f P rpIq ùñ

Dk ě 0, fk P I ùñ Dk ě 0, fkp0q “ 0, @x P ZpIq ùñ fpxq “ 0, @x P ZpIq.
pùñq : Let f R rpIq, we want to show that there exists x P ZpIq such that

fpxq ‰ 0.
Idea: Any ring homomorphism ϕ : R Ñ K such that ϕ|K “ Id is an evaluation

map evx : g ÞÝÑ gpxq for some x P Kn (x “ px1, ¨ ¨ ¨ , xnq, xi “ ϕpxiq). Hence any
ring homomorphism ϕ : R Ñ K such that ϕ|K “ Id and ϕ|I “ 0 is evx for some
x P ZpIq. Therefore need to find a ring homomorphism ϕ : R Ñ K such that
ϕ|K “ Id and ϕ|I “ 0, ϕpfq ‰ 0.

Let S “ tfk|k ě 0u. This is a multiplicative set of R, and we have f R rpIq ùñ

S X I “ H ùñ S´1I is proper ideal of S´1R ùñ S´1I Ď M maximal ideal of
S´1R. Let

ϕ : R I “ S´1R{M

S´1R

fractions quotient

.

We observe ϕ|I “ 0 since S´1I Ď M and ϕpfq ‰ 0 since f
1

is invertible in
S´1R ùñ

f
1

R M . Moreover T » K. Indeed, T is a field since M is maximal
ideal. Also T is finitely generated over K (indeed S´1R “ t P

fk
, P P R, k ě 0u

with generators x1
1
, ¨ ¨ ¨ , xn

1
, 1
f

). Hence T “ S´1R{M is finitely generated. Hence
by Zariski’s Lemma (Lemma 7.2.3), we have T is algebraic over K. Then K is al-
gebraically closed implies that T “ rK, where rK is copy of K inside T . Hence
up to composing by an isomorphism rK Ñ K we get rϕ : R Ñ K such that
ϕ|K “ Id, ϕpIq “ 0, ϕpfq ‰ 0.

It remains to prove Zariski’s Lemma. We first claim a lemma.

Lemma 7.2.4. Let R Ď S Ď T be ring (hence S, T are R´algebras), suppose:

• ring R is Noetherian,

• T is finitely generated R´algebra and finitely generated S´module,

then S is finitely generated R´algebra.

Proof. Let x1, ¨ ¨ ¨ , xn be generators of T as R´algebra, y1, ¨ ¨ ¨ , ym be generators of
T as S´module. Then y1, ¨ ¨ ¨ , ym generators implies that there is sij P S, xi P
ř

j sijyj , hence there is sijk P S, yiyj “
ř

k sijkyk. Let S 1 “ Rrtsij, sijkus be
R´algebra generated by sij, sijk, we have R Ď S 1 Ď S Ď T .

Since S 1 is a finitely generated R´algebra, S 1 is Noetherian ring. Any x P T
is a polynomial in the xi, hence a linear combination of yk with coefficients in S 1.
Hence T is a finitely generated S 1 module. Therefore T is Noetherian S 1´module
(since S 1 Noetherian).
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Further, S submodule of T implies that it is a finitely generated S 1´module.
Lastly, S 1 finitely generated R´algebra and S finitely generated S 1´algebra im-
plies that S is finitely generated R´algebra.

Now we are to prove the Zariski’s Lemma.

Proof of Lemma 7.2.3, “Zariski’s Lemma”. Let K Ď E be a field extension such that
E is finitely generated K´algebra, we want to show E is finite dimensional over
K.

Let x1, ¨ ¨ ¨ , xn be generators of E as K´algebra, it suffices to show that
x1, ¨ ¨ ¨ , xr are algebraic over K.

Suppose not and order the xi such that @i “ 1, ¨ ¨ ¨ , r, xi is not algebraic over
Kpx1, ¨ ¨ ¨ , xi´1q and @i “ r ` 1, ¨ ¨ ¨ , n, xi is algebraic over Kpx1, ¨ ¨ ¨ , xrq. Let
F “ Kpx1, ¨ ¨ ¨ , xrq Ď E be field generated by x1, ¨ ¨ ¨ , xr » Kpx1, ¨ ¨ ¨ , xrq fields
of rational functions in n variables. Then E “ F pxr`1, ¨ ¨ ¨ , xnq is finite F´module
and E is finitely generatedK´algebra together with previous lemma implies that
F is finitely generated K´algebra.

Let f1, ¨ ¨ ¨ , fk be generators of Kpx1, ¨ ¨ ¨ , xrq over K. Let P1, ¨ ¨ ¨ , Pl be the ir-
reducible polynomial dividing the denominators of f1, ¨ ¨ ¨ , fk. Then any denomi-
nators of Krf1, ¨ ¨ ¨ , fks is constant or multiple of one of the Pi.

But 1
ś

i Pi`1
is not of this form, which is a contradiction.

7.3 Some Link to Algebraic Geometry

Definition 7.3.1. Let K be an algebraically closed field, let R “ KrX1, ¨ ¨ ¨ , Xns,
then

• For Y Ď Kn, we define IpY q “ tf P R|fpxq “ 0, @x P Y u,

• For S Ď R, we define ZpSq “ tx P Kn|fpxq “ 0, @f P Su.

A set of points of the form ZpSq is called algebraic set.

(Claim: Any algebraic set is of the form ZpJq where J is a radical ideal (that

is, rpJq “ J) and tY Ď Kn algebraic setu
I

é
Z

tJ Ď R radical idealu are inclusion

reserving bijections.)

Remark 7.3.2. (1). The map I, Z are inclusion reserving, that is

Y Ď Y 1, IpY q Ě IpY 1
q,

S Ď S 1, ZpSq Ě ZpS 1
q.

(2). For all S Ă R, we have ZpSq “ ZppSqq “ ZprpSqq.
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Example 7.3.3. We have ZptX2
1uq “ ZppX2

1 qq “ ZppX1qq.

By above, any algebraic set is of the form ZpJq where J is radical ideal.

Remark 7.3.4. (1). For all Y, IpY q is clearly an ideal and a radical ideal.

(2). Hilbert’s Nullstellensatz can be stated as follows: for all J ideal, we have
IpZpJqq “ rpJq (no more than rpJq).

Example 7.3.5. We see IpZpX2
1 qq “ pX1q.

Consequently, we have

• for all J radical ideal, IpZpJqq “ J ,

• for all Y algebraic set, there exists J radical ideal such that Y “ ZpJq, hence,
ZpIpY qq “ ZpIpZpJqqq “ ZpJq “ Y .

Corollary 7.3.6. We have I, Z are inclusion reversing bijections that

tY Ď Kn algebraic setu I
é
Z

tJ Ď R radical idealu.

Remark 7.3.7. We have that

(a). The identity IpY1 Y Y2q “ IpY1q X IpY2q,

(b). If J1, J2 are radical ideals, then J1 X J2 is radical ideal and ZpJ1 X J2q “

ZpJ1q Y ZpJ2q.

Proof. (a). Clear.

(b). We have J1 X J2 radical ideal because rpJ1 X J2q “ rpJ1q X rpJ2q “ J1 X J2.

Then IpZpJ1 X J2qq “ J1 X J2 “ IpZpJ1qq X IpZpJ2qq
paq
“ IpZpJ1q YZpJ2qq and

I is a bijection.

Remark 7.3.8. Part (b) above implies that finite union of algebraic set is algebraic
set. Also since arbitrarity the intersection of algebraic set is algebraic set (home-
work).

Definition 7.3.9. An affine algebraic variety (AAV) is an algebraic set which is
not the union of smaller algebraic set.

Corollary 7.3.10. We have I, Z are bijection

H ‰ tY Ď Kn, AAVu ÐÑ tI Ď R prime idealu.
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Proof. By Remark 7.3.7 (b), we have Y is affine algebraic variety if and only if Y “

ZpJq with J irreducible radical ideal, where irreducible means “not intersection
of bigger ideals”. Moreover,

• if J is prime then J is radical and irreducible (exercise from homework 4
shows that prime means irreducible, P “ XIj ùñ P “ Ij).

• Conversely, suppose J is radical and irreducible, then J radical implies that
J “ rpJq “

Ş

JĎP prime P . Also J irreducible implies that J is one of the P ,
hence prime.

Hence the bijection.

Definition 7.3.11. Let Y Ď Kn be algebraic set, then RpY q “ R{IpY q is called
affine coordinate ring (“polynomial f on Y ”).

Remark 7.3.12. We have

• The set Y is affine algebraic variety if and only if RpY q is a domain.

• tpoint on Y u is in bijection with tmaximal ideals of R containing Y u, which
is in bijection with tmaximal ideals of RpY qu.

Explicitly y P Y ÞÑ MpY, yq “ t rf P RpY q|fpyq “ 0u.

Definition 7.3.13. Let Y Ď Kn be affine algebraic variety, then

• U Ď Y is an open set if U “ Y zZpSq for some S Ď R,

• A regular function of U Ď Y is ρ : Y ÝÑ K such that Df, g P R, @x P

U, gpxq ‰ 0 and ρpxq “
fpxq

gpxq
.

Notation: We say OpY q “ tregular function on Y u and OpY, yq “ tpU, ρq|y P

U open set of Y, ρ regular on Uu where pU, ρq „ pU 1, ρ1q if and only if there exists
V open set y Ď V Ď U X U 1 such that ρ|V “ ρ1|V .

Theorem 7.3.14. We have

(1). the isomorphism OpY q » RpY q as rings, where the isomorphism is given

α : RpY q ÝÑ OpY q,

rf ÞÝÑ f |Y as a function.
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(2). for all y P Y,OpY, yq » RpY qMpY,yq ÐÝ trg P RpY q|gpyq “ 0u where the right
hand side of the isomorphism is a localization at MpY, yq. The isomorphism is
given by

β : RpY qMpY,yq ÝÑ OpY, yq,

rf

rg
ÞÝÑ pv,

f

g
|vq, where U “ tx P Y |gpxq ‰ 0u.

Definition 7.3.15. Let Y, Y 1 be affine algebraic varieties, a function ϕ : Y Ñ Y 1 is a
morphism of affine algebraic varieties, if U Ď Y 1 open, for all ρ : U Ñ K regular,
then ρ ˝ ϕ regular on ϕ´1pUq.

The definition can be viewed as the following commutative diagram:

Theorem 7.3.16. We have Y » Y 1 if and only if RpY q » RpY 1q. In fact there is function
F : Y Ñ RpY q such that F : HompY, Y 1q Ñ HompRpY 1q, RpY qq is a bijection.



8
Primary Decomposition of Ideals

8.1 Reduced Primary Decomposition

Motivation:

• decomposing algebraic set into variety,

• “replacing” factorization of elements in Noetherian rings which are not
UFD.

Example 8.1.1. Consider R “ Zri
?
5s Ď C, it is Noetherian but not UFD since

2 ¨ 3 “ p1 ` i
?
5qp1 ´ i

?
5q.

However, there is “semisimple” factorization of ideals.

Definition 8.1.2. Let R be a (commutative) ring. Any ideal Q Ď R is primary if
Q ‰ R and x R Q, y R rpQq implies that xy R Q. It has some equivalent phrasing:

• If xy P Q then either x P Q or y P rpQq,

• If xy P Q, x, y R Q then there is some n ą 0 such that xn P Q and yn P Q.

Remark 8.1.3. Prime implies primary.

Example 8.1.4. Take R “ Z, the primary ideal are of the form I “ ppkq, p prime
integer.

Example 8.1.5. If M is a maximal ideal then for all k, Mk is primary.

Proposition 8.1.6. If Q is primary, then rpQq is the smallest prime ideal containing Q.

Definition 8.1.7. We say Q is P´primary if rpQq “ P .

57
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Proof. Since rpQq “
Ş

QĎP prime P , it suffices to show rpQq is prime. We have xy P

rpQq ùñ Dk, xkyk P Q with Q being P primary it then implies that Dk,m,such that
xk P Q or ykm P Q. Hence x or y is in rpQq.

Definition 8.1.8. Let I Ď R be ideal, then

• A primary decomposition of I is an expression of the form I “
Şk
i“1Qi with

Qi primary.

• A primary decomposition is reduced if

(a). for all j,
Ş

i‰j Qi Ę Qj ,

(b). all the rpQiq are distinct.

We call this reduced primary decomposition as RPD.

Example 8.1.9. If R “ Z, there exists unique RPD for any ideal. The RPD of
ppk11 ¨ ¨ ¨ pkmm q is

Şm
i“1ppkii q.

Lemma 8.1.10. If Q1, Q2 are primary such that rpQ1q “ rpQ2q, then Q “ Q1 X Q2 is
primary and rpQq “ rpQ1q “ rpQ2q. Thus from any primary decomposition one can
create a RPD.

Proof. We see

• rpQq “ rpQ1 X Q2q “ rpQ1q X rpQ2q “ rpQ1q.

• Q is primary, xy P Q and y R rpQq “ rpQ1q “ rpQ2q implies that x P Q1XQ2 “

Q.

• Thus if Qi “ Qj , reduce Qi, Qj by Qi X Qj .

Hence the lemma.

Example 8.1.11. Take R “ CrX, Y s, then I “ pX2, XY q has (at least) 2 RPD:

I “ pXq X pX2, XY, Y 2
q “ pXq X pX2, Y q.

Notation: For I Ď R ideal, and z P R, we say pI : zq “ tr P R|rz P Iu (this is an
ideal containing I).

Theorem 8.1.12. If I “
Şm
i“1Qi is RPD then

trpQ1q, ¨ ¨ ¨ , rpQmqu “ tprime ideals of the form rpI : xq, x P Ru.

Example 8.1.13. Take R “ CrX, Y s, I “ pX2, XY q, then rpXq “ pXq “ rpI : Y q

and rppX2, XY, Y 2qq “ rppX2, Y qq “ pX, Y q “ rpI : Xq. For any z ‰ X, Y either
rpI : zq “ pXq or pX, Y q or is not prime.
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Lemma 8.1.14. If Q Ď R is primary then for any x P R, we have

rpQ : xq “

#

R if x P Q,

rpQq if x R Q.

Proof. We have

• x P Q ùñ pQ : xq “ R ùñ rpQ : xq “ R,

• x R Q, y P rpQ : xq ðñ Dn ě 0, ynx P Q
Q primary

ðñ Dm ą 0, ym P Q ðñ y P

rpQq.

This gives the lemma.

Proof of Theorem 8.1.12. Let I “
Şn
i“1Qi RPD, observe that rpI : xq “ rpp

Ş

Qiq :
xq “ rp

Ş

pQi : xqq “
Ş

prpQi : xqq “
Ş

i such that xRQi
rpQiq. Now we want to show

trpQ1q, ¨ ¨ ¨ , rpQmqu “ trpI : xq primeu.
(Ď): reduced decomposition implies that for all j, there is xj P

Ş

i‰j QizQj .
Hence rpI : xjq “ rpQjq.

(Ě): Suppose rpI : xq is prime, rpI : xq “
Ş

i,xRQi
rpQiq since prime ideals are

irreducible (cannot be written as intersection of bigger ideals), we get rpI : xq “

rpQiq for some I .

Theorem 8.1.15 (Weak Second Uniqueness Theorem). Suppose I “
Şn
i“1Qi is RPD,

if j P rns is such that rpQjq does not contain rpQiq, @i ‰ j, thenQj appears in every RPD
of I .

Example 8.1.16. Consider the ideal I “ pX2, XY q Ď CrX, Y s and I “ pXq X

pX2, XY, Y 2q, rpXq “ pXq does not contain rpQiq, i ‰ j. Hence pXq will appear in
every RPD.

Stronger version: for all S Ď trpQiqu closed downward,
Ş

rpQiqPS Qi is indepen-
dent of RPD.

Lemma 8.1.17. Let Q Ď R primary ideal and let S Ď R be multiplicative set, then
Q X S “ H implies

(a). rpQq X S ‰ H,

(b). Q is a contraction (for the fraction map ϵ : R Ñ S´1R),

(c). S´1Q is also primary.

Proof. We check one by one.
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(a). Suppose rpQq X S ‰ H, then Dx P R, n ě 0, x P S, xn P Q hence xn P Q X S
which implies Q X S ‰ H, a contradiction.

(b). Recall Q is contraction if and only if s P S, x R Q ùñ sx R Q. Let s P S, x R Q,
then S multiplicative set implies that @n, sn P S thus @n, sn R Q. Hence
s R rpQq. Then Q is primary so x R Q, s P rpQq ùñ sx R Q.

(c). Easy check.

Hence the lemma.

Remark 8.1.18. Easy to check that the contradiction of a primary ideal is primary.
Thus (b) above implies

tprimary ideal I Ď RzSu
bijection
ÐÑ tprimary ideal of S´1Ru,

I ÞÝÑ S´1I.

Proof of Theorem 8.1.15. Let I “
Şn
i“1Qi “

Şn
i“1Q

1
i such that rpQiq “ rpQ1

iq. Sup-
pose rpQjq does not contain rpQiq for all i ‰ j. Want to show Qj “ Q1

j . Let

S “ RzrpQjq, @i ‰ j, rpQiq X S ‰ H
paq

ùñ Qi X S ‰ H ùñ S´1Qi “ S´1R.
Thus S´1I “ S´1p

Ş

iQiq “
Ş

ipS
´1Qiq “ S´1Qj . Since rpQ1

iq “ rpQiq@i, the
same holds and S´1I “ S´1p

Ş

iQ
1
iq “

Ş

ipS
´1Q1

iq “ S´1Q1
j . hence S´1Qj “ S´1Q1

j

and since Qj, Q
1
j are contractions, Qj “ pS´1Qjq

c “ pS´1Q1
jq
c “ Q1

j .

Theorem 8.1.19. If R is Noetherian, then any ideal admits a RPD.

Lemma 8.1.20. If R is Noetherian, then any ideal is a finite intersection of irreducible
ideals.

Proof. Suppose for contradiction that I cannot be written as finite intersection of
irreducibles. In this case there is I1, J1 ideals of I “ J1 X I1 with I Ĺ I1 and
I1 cannot be written as intersections of ideals, I “ J1 X J2 X I2, I1 Ď I2, and
I2.... We get pInq strictly increasing infinite chain of ideals. It is impossible in R
Noetherian.

Lemma 8.1.21. If R is Noetherian, then I irreducible implies I primary.

Proof. Let I be irreducible, let x, y P R, xy P I, x R I , we need to show y P rpIq

(consider ideals pI : ynq “ tr P R, xyn P Iu). This is a weakly increasing chain of
ideal implies that Dn, pI : ynq “ pI : yn`1q.

We claim pI ` xq X pI ` ynq “ I . Indeed let z P pI ` xq X pI ` ynq, then
z P pI ` xq ùñ zy P I . And z P pI ` ynq ùñ z “ ryn ` z1, r P R, z1 P I ùñ ryn`1 P

I ùñ r P pI : yn`1q “ pI : ynq ùñ ryn P I ùñ z P I .
Since I is irreducible, (and I ` x ‰ I), we get I ` yn “ I . Hence yn P I ùñ y P

rpIq as wanted.
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Hence we showed

• The existence of RPD if R is Noetherian,

• First uniqueness: rpQiq is uniquely determined,

• Second uniqueness: Qi of “small” rpQiq uniquely determined.

Example 8.1.22. If R is Noetherian, then any radical ideal I has unique decompo-
sition I “

Şn
i“1 Pi, Pi prime, Pj Ğ

Ş

i“j Pi. This induces that any algebraic set can
be written uniquely as finite union of AAVs.

8.2 Dimensions

Remark 8.2.1. In Z any ideal has a unique RPD. This is related to the fact that
dimpZq “ 1.

Definition 8.2.2. The dimension of a ringR is the maximal k such that there exists
P0 Ĺ P1 Ĺ ¨ ¨ ¨ Ĺ Pk Ĺ R prime ideal.

Example 8.2.3. We have dimpZq “ 1, P0 “ p0q, P1 “ ppq where p prime integers.

Remark 8.2.4. A domain R has dimension 0 if and only if R is a field.
A domain R has dimension 1 if and only if any prime ideal that is not 0 is

maximal.

Proposition 8.2.5. In a Noetherian domain of dimension 1, any ideal has a unique RPD.

Proof. IfR is Noetherian, this means that any ideal I has RPD I “
Ş

Qi. Moreover
(if I ‰ 0), rpQiq is maximal for all i, hence second uniqueness theorem gives Qi

are uniquely determined.

Remark 8.2.6. If R is domain of dimension 1, then I “
Ş

Qi RPD if and only if
I “

ś

Qi, Qi primary and rpQiq distinct.
Indeed, rpQiq maximal distinct means that rpQiq`rpQjq “ R for all i ‰ j which

implies that Qi ` Qj “ R, @i ‰ j. This implies that
Ş

Qi “
ś

Qi (Exercise).

Coming next: In integrally closed Noetherian domain of dimension 1, any
ideal can uniquely be written as product of prime (“Dedekind domain”).
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Integral Dependence and Nakayama Lemma

9.1 Nakayama Lemma

Lemma 9.1.1. Let M be a finitely generated R´module, let ϕ P EndRpMq and let I Ď

R ideal such that Impϕq Ď I ¨ M (I ¨ M “ t
ř

rixi|ri P I, xi P Mu). Then Dn ą

0, r1, ¨ ¨ ¨ , rn P I such that ϕn ` r1ϕ
n´1 ` ¨ ¨ ¨ ` rnId “ 0.

Proof (generalization of Caylay-Hamilton Proof). Let x1, ¨ ¨ ¨ , xn generators of M . For
all i, there exists aij P I such that ϕpxiq “

řn
j“1 aijxj , then

A

¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

0
0
...
0

˛

‹

‹

‹

‚

where A “ pδijϕ ´ aijIdqijPrns P MatnpEndRpMqq.

Let B “ adjoint of A “ tpcofactors of Aq, then

B ¨ A “

¨

˚

˝

detpAq 0
... . . . ...
0 detpAq

˛

‹

‚

where detpAq “ detpδijϕ ´ aijIdq P EndRpMq,

where the right hand side is
ř

δPSn
sgnpδq.

We have BA

¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

“ 0 implies that for all i, detpAqpxiq “ 0 which means

detpAq “ 0.

Corollary 9.1.2 (Nakayama). If M is finitely generated R´module, and I Ď R ideal
such that I ¨ M “ M , then Dx P I, p1 ´ xqM “ 0.
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Proof. For ϕ “ IdM , we have Impϕq Ď I ¨ M . This implies that Dr1, ¨ ¨ ¨ , rn P I such
that p1 ` r1 ` ¨ ¨ ¨ ` rnqIdM “ 0. Take x “ ´pr1 ` ¨ ¨ ¨ ` rnq.

Definition 9.1.3. The Jacobson ideal of R is J “
Ş

PĎR maximal P (it is a radical
ideal).

Proposition 9.1.4. We have J “ tx P R|@r P R, 1 ` rx is unitu.

Proof. Homework 8.

Corollary 9.1.5. If M is finitely generated R´module and J ¨ M “ M , then M “ 0.

Proof. By Corollary 9.1.2, there is x P J, p1 ´ xqM “ 0. Hence x P J ùñ 1 ´ x is a
unit hence M “ 0.

Corollary 9.1.6. Let M be finitely generated R´module, and N Ď M submodule, such
that M “ N ` J ¨ M . Then M “ N .

Proof. We have M “ N `J ¨M ùñ J ¨M{N “ pN `J ¨Mq{N “ M{N ùñ M{N “

0.

Corollary 9.1.7. Let R be local ring and let P be its maximal ideal, let M be finitely
generated R´module and let x1, ¨ ¨ ¨ , xn P M such that tx1 ` P ¨ M, ¨ ¨ ¨ , xn ` P ¨ Mu

generates M{P ¨ M as R{P´vector space. Then x1, ¨ ¨ ¨ , xn are generators of M over R.

Proof. Let N “ Rxx1, ¨ ¨ ¨ , xny Ď M submodule generated by x1, ¨ ¨ ¨ , xn. We have
M “ N ` P ¨ M , since J “

Ş

I max I “ P . This implies M “ N .

9.2 Integral Dependence

Definition 9.2.1. LetR Ď T be rings, α P T is integral overR if Dn ą 0, r1, ¨ ¨ ¨ , rn P

R such that αn ` r1α
n´1 ` ¨ ¨ ¨ ` rn “ 0.

Example 9.2.2. We have

• Any α P R is integral over R.

• For R field, α integral over R if and only if α algebraic over R.

• For R “ Z, T “ Q, only integers are integral over Z. If α “ a
b

P QzZ, then we
can take gcdpa, bq “ 1 by pa

b
qn ` r1pa

b
qn´1 ` ¨ ¨ ¨ ` rn “ 0. Then an divisible by

b, which is impossible.

Notation: For R Ď T and α P T , we denote Rrαs “ Rxα, α2, ¨ ¨ ¨ y.

Proposition 9.2.3. Let R Ď T , the following are equivalent for α P T :
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(1). The element α is integral over R,

(2). The module Rrαs is a finitely generated R´module,

(3). There exists S Ě Rrαs ring which is finitely generated R´module.

Proof. (1)ùñ(2) because αn ` r1α
n´1 ` ¨ ¨ ¨ ` r1 “ 0, then Rrαs “ Rxα, ¨ ¨ ¨ , αn´1y.

(2)ùñ(3): Take S “ Rrαs.
(3)ùñ(1): Let ϕ “ αIdS : S Ñ S is a R´module endomorphism. Then S is

finitely generated implies that Dr1, ¨ ¨ ¨ , rn P R such that ϕn`r1ϕ
n´1`¨ ¨ ¨`rnId “ 0.

Applying this to 1S gives αn ` r1α
n´1 ` ¨ ¨ ¨ ` rm “ 0.

Corollary 9.2.4. We have α1, ¨ ¨ ¨ , αn integral over R if and only if Rrα1, ¨ ¨ ¨ , αns is a
finitely generated R´module. Hence sums, difference, product of integral elements are
integral over R.

Proof. (ùñ): Easy by induction on n ((1)ùñ(2)).
(ðù): Already proved ((3)ùñ(1)).

Thus any element in Rrα1, ¨ ¨ ¨ , αns is integral ((3)ùñ(1)).

Definition 9.2.5. Let R Ď T be rings. The integral closure of R in T is R
T

“ tα P

T |α integral over Ru.

Example 9.2.6. We have ZQ
“ Z.

Definition 9.2.7. Let R Ď T , then

• If R
T

“ T , then T is called integral over R.

• If R
T

“ R, then R is called integrally closed in T .

Remark 9.2.8. The closure R
T

is subring of T (since sum, difference, product of
integral are integral).

Lemma 9.2.9. Let R Ď S Ď T be rings, if S is integral over R, and T is integral over S,
then T is integral over R.

Proof. Let α P T , then Ds1, ¨ ¨ ¨ , sn P S such that αn ` s1α
n´1 ` ¨ ¨ ¨ ` sn “ 0. Hence

Rrs1, ¨ ¨ ¨ , sn, αs is finitely generated Rrs1, ¨ ¨ ¨ , sns´module and Rrs1, ¨ ¨ ¨ , sns is
finitely generated R´module. Therefore Rrs1, ¨ ¨ ¨ , sn, αs is finitely generated
R´module. Then α is integral over R.

Corollary 9.2.10. The closure RT is integrally closed in T .
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Proof. Apply lemma, R Ď R
T

Ď R
T
T

. By lemma any element of R
T
T

is integral

over R hence in R
T

. Thus R
T
T

“ R
T

.

Lemma 9.2.11. Let R Ď T be rings, with T integral over R, then

(1). for all J Ď T ideal, T {J is integral over pR ` Jq{Jp» R{pR X Jqq.

(2). For all S Ď R multiplicative set, S´1T is integral over S´1R.

Proof. Need to prove that

(1). For all α P T, α ` J is integral over pR ` Jq{J .

(2). For all α P T, for all s P S, α
s

is integral over S´1R.

Exercise.

Lemma 9.2.12 (Localization commutes with integral closure). Let R Ď T be rings,

and let S Ď R multiplicative set, then S´1R
S´1T

“ S´1pR
T

q.

Proof. (Ě): By statement (2) in previous lemma (R
T

is integral over R implies that
S´1R

T
is integral over S´1R).

(Ď): We have t
s

P S´1R
S´1T

ùñ Dri P R, si P R, p t
s
qn`p r1

s1
qp t
s
qn´1 `¨ ¨ ¨`p rn

sn
q “ 0.

Then multiply by pss1 ¨ ¨ ¨ snqn implies that pts1 ¨ ¨ ¨ snqn ` ¨ ¨ ¨ “ 0. Thus ts1 ¨ ¨ ¨ sn is
integral over R. Hence t

s
“ ts1¨¨¨sn

ss1¨¨¨sn
P S´1R

T
.

Definition 9.2.13. A domain R is called integrally closed if it is integrally closed
in its field of fraction.

Example 9.2.14. We have

• ZQ
“ Z hence Z is integrally closed.

• Any UFD is integrally closed (same proof as for Z).

Proposition 9.2.15 (Integrally closed is a local property). For a domain R, the fol-
lowing are equivalent:

(1). The domain R is integrally closed.

(2). The local ring RP is integrally closed for all P Ď R prime ideal.

(3). The local ring RP is integrally closed for all P Ď R maximal ideal.
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Proof. Let K be the field of fraction of R, for all P prime, we have R Ď RP Ď K “

Rt0u. Hence K is a field of fractions of RP . Let C “ R
K

. By previous lemma,
CP “ pRP qK . Let

ϕ : R ÝÑ C,

r ÞÝÑ r,

be embedding map, and for P Ď R prime, let

ϕP : RP ÝÑ CP ,

r

s
ÞÝÑ

r

s
,

localization of ϕ at P , we have

p1q ðñ ϕ surjective,

p2q ðñ ϕP surjective @P Ď R prime,

p3q ðñ ϕP surjective @P Ď R maximal.

The 3 statements are equivalent since “being surjective is a local property”.

9.3 Going Up/Down Theorems

Remark 9.3.1. Let R Ď T be rings such that for all J Ď T ideal, J XR is ideal, and
@J Ď T prime ideal, J XR prime (indeed RX J is contraction of J for embedding
map R ãÑ T ). We will show that if T integral over R, then any prime ideal of R is
of this form.

Lemma 9.3.2. Let R Ď T be domains and T is integral over R, then T is a field if and
only if R is a field.

Proof. Exercise.

Corollary 9.3.3. Let R Ď T be a ring such that T is integral over R, let Q Ď T be a
maximal ideal of T , then Q is maximal in T if and only if Q X R is maximal in R.

Proof. We have T {Q,R{RXQ are domains (since Q,QXR are prime). By lemma,
T {Q is integral over pR ` Qq{Q » R{R X Q. Hence Q is maximal if and only if
T {Q is a field if and only if R{RXQ is a field if and only if RXQ is maximal.

Corollary 9.3.4. Let R Ď T be rings, T integral over R, let Q Ď Q1 Ď T be prime ideals.
If Q X R “ Q1 X R then Q “ Q1.
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Proof. Assume Q X R “ Q1 X R, then the ideal P “ Q X R is prime ideal of R.
By lemma, TP is integral over RP (here TP “ S´1T, S “ RzP ). The localization
of QP , Q

1
P satisfy QP X RP “ Q1

P X RP “ pQ X RqP “ PP maximal ideal of RP .
By Corollary 9.3.3, QP , Q

1
P are maximal ideals of TP . Since QP Ď Q1

P , we get
QP “ Q1

P . Moreover, Q and Q1 are prime and not intersecting S “ RzP . Hence
they are contractions via localization at P . Hence Q “ QC

P “ QC1

P “ Q1.

Theorem 9.3.5. Let R Ď T be rings, T integral over R, for all P Ď R prime ideal of R,
there is Q Ď T prime ideal of T such that P “ Q X R.

Proof. We have that TP integral over RP . Moreover, the diagram

R T

RP TP

α

ϕ ψ

β

,

where α, β embedding map, ϕ, ψ localization maps is commutative (r ÞÑ r
1

P TP ).
LetM be a maximal ideal of TP , then β´1pMq “ MXRP is maximal ideal ofRP

(by Corollary 9.3.3). Hence β´1pMq “ PP and thus ϕ´1pβ´1pMqq “ P . Therefore
P “ α´1pψ´1pMqq “ R X ψ´1pMq where the last term is prime ideal of T .

Corollary 9.3.6 (Going Up Theorem). Let R Ď T be rings, T integral over R, let
P1 Ď P2 Ď R be prime ideal, let Q1 prime ideal of T , such that P1 “ Q1 X R, then
DQ2 Ě Q1, prime ideal of T such that P2 “ Q2 X R.
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Proof. By previous lemma, T {Q is integral over R ` Q1{Q1 » R{P1, and P2{P1

is prime in R{P1. Hence by previous theorem, there is Q2 Ď T {Q1 such that
P2{P1 “ Q2 X R{P1 and Q2 “ Q2{Q1 for some Q2 Ě Q1 prime ideal of T . Hence
P2{P1 “ pQ2 X Rq{P1. Therefore, P2 “ Q2 X R.

Corollary 9.3.7. The dimension dimR “ dimT .



10
Dedekind Domains and Discrete Valuation Rings

10.1 Basic Definitions and Results

Recall:

• A Dedekind domain is a Noetherian domain of dimension 1 which is inte-
grally closed.

• In Noetherian domain of dimension 1, any ideal I ‰ 0 can be written
uniquely as I “

ś

Qi with Qi primary with distinct radicals.

Goal: show that in Dedekind domain, I ‰ 0 has a unique factorization I “
ś

P di
i where Pi are prime ideals.

Motivations:

Definition 10.1.1. We say

• An algebraic number field is a finite algebraic extension L of Q.

• Its ring of integers is ZL.

Example 10.1.2. Let L “ Qris be an algebraic number field and then Zris is its ring
of integers.

Theorem 10.1.3. The ring of integers ZL of any algebraic number field is a Dedekind
domain.

Lemma 10.1.4. Let R be a domain integrally closed in its field of fraction K. If L is a
finite separable extension of K, then there exists b1, ¨ ¨ ¨ , bn basis of L over K such that
R
L

Ď xb1, ¨ ¨ ¨ , bny.

Proof. Skipped (field theory).
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Proof of Theorem 10.1.3. To show Dedekind domain, we are to show

• it is Noetherian domain,

• it is dimension 1,

• it is integrally closed.

We see

• ZL is a domain since it is included in L, which is a field.

• Since K “ Q has characteristic zero, any extension of Q is separable.

Hence lemma gives ZL Ď Zxb1, ¨ ¨ ¨ , bny is finitely generated Z´module. Since Z is
PID, we have ZL is finitely generated Z´module. Also since Z is Noetherian, we
have ZL is Noetherian (finitely generated algebraic over Noetherian). Hence we
have

• ZL is integrally closed in its field of fraction K since K Ď L,

• dimpZLq “ dimpZq “ 1 since dimension of integral extension equals the
dimension of the ring.

Hence the theorem is proved.

Definition 10.1.5. Let K be a field. A discrete valuation is v : Kˆ ÝÑ Z such that

• v is surjective,

• vpxyq “ vpxq ` vpyq,

• vpx ` yq ě minpvpxq, vpyqq.

(v is surjective group homomorphism pKˆ,ˆq ÝÑ pZ,`q). We get vp0q “ `8.

Example 10.1.6. Let K “ Q, given p prime number we define vppqq “ k if q “ pk a
b

where p ∤ a, p ∤ b.

Remark 10.1.7. We have vp1q “ 0, vpx´1q “ ´vpxq, vp´1q “ ´vp´1q “ 0, vp´xq “

vpxq. We also have Kv “ tx P K|vpxq ě 0u is a subring of K.

Definition 10.1.8. The ring R is a discrete valuation ring (d.v.r) if R “ Kv for
some field K and discrete valuation v.

Example 10.1.9. We have Zppq “ ta
b
|p ∤ bu is a d.v.r since Zppq “ Qvp with vp defined

as before.
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Remark 10.1.10. We have the following facts:

• For any d.v.r Kv, @x P K, either x or x´1 is in Kv.

• An element x P Kv is invertible if and only if vpxq “ 0.

• If 0 ď vpxq ď vpyq then x|y in Kv (because yx´1 P Kv).

Theorem 10.1.11. Let R be a ring, then R is a local Dedekind domain if and only if R is
a d.v.r. Moreover, the following are equivalent properties for a local Noetherian domain of
dimension 1:

(1). The ring R is integrally closed (hence local Dedekind).

(2). The maximal ideal M Ď R is principal (generated by a single element).

(3). Every ideal I ‰ 0 is a power of the maximal ideal M .

(4). There exists p P R such that every ideal is of the form ppkq.

(5). The ring R is a d.v.r.

Proof. (ðù): We see

• Let R be a d.v.r. Let p P R, vppq “ 1. For I ‰ 0 ideal, and let k “ minxPIpvpxqq.
Then there exists x P I, vpxq “ k “ vppkq. This implies pk P I (since x|pk) and
I “ ppkq (since for all y P I, vppkq ď vpyq ùñ pk|y). Given that the nonzero
ideal are ppq Ě pp2q Ě pp3q Ě ¨ ¨ ¨ , it is clear that R is Noetherian, local of
dimension 1 (unique nonzero prime ideal is ppq).

• Lastly R is integrally closed, let α P K field of fractions of R. Suppose
Dr1, ¨ ¨ ¨ , rn P R such that αn ` r1α

n´1 ` ¨ ¨ ¨ ` rn “ 0. If α R R, then α´1 P R
(since R is d.v.r). Hence α “ ´r1 ´ r2α

´1 ´ ¨ ¨ ¨ ´ rnpα´1qn´1 P R.

(ùñ): It suffices to show p1q ùñ p2q ùñ p3q ùñ p4q ùñ p5q (we have already
proved p5q ùñ p1q). We prove

p1q ùñ p2q and p2q ùñ p3q are left as homework.
p3q ùñ p4q: We have M2 Ď M and M2 ‰ M (because M “ J Jacobson radical),

hence there exists p P MzM2. Then Dn, ppq “ Mn implies that ppq “ M and thus
for all k,Mk “ ppkq.

p4q ùñ p5q: Take M “ ppq is the unique maximal ideal, hence ppq “ J Jacobson
radical, for all k, ppk`1q ‰ ppkq (because J ¨ N “ N implies N “ 0). Hence for any
x P Rzt0u, D!k ě 0, pxq “ ppkq and we define vpxq “ k. We extend v to the field of
fractions K of R by vpa

b
q “ vpaq ´ vpbq. It is easy to see that R “ Kv is a d.v.r.

Theorem 10.1.12. LetR be a Noetherian domain of dimension 1, the following are equiv-
alent:
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(a). R is integrally closed (hence Dedekind).

(b). For all P Ď R prime, RP is a local Dedekind (equivalent to a d.v.r).

(c). Every primary ideal is a power of prime ideal.

(d). Every nonzero ideal has a unique factorization into prime ideals.

Lemma 10.1.13. Ideal P maximal implies that P n primary for all n (homework).

Proof of Theorem 10.1.12. paq ùñ pbq: integrally closed is a local property.
pbq ùñ pcq: Let Q be primary ideal and let P “ rpQq, then Q primary implies

that Q “ Qec for R ÝÑ RP . Then RP local Dedekind implies that Qe “ QP is a
power of the maximal PP . Hence Q “ pP k

P qc “ ppP kqP qc “ pP kqec “ P k where P k

is primary as power of maximal.
pcq ùñ pbq: Let P be prime ideal, want to show RP is local Dedekind by pre-

vious theorem, it suffices to show that any ideal of RP is a power of PP . [We skip
the fact that Q has RPD and localizations].

pcq ùñ pdq: Existence: I “
ś

Qi with Qi primary (already shown) implies that
I “

ś

P di
i by (c). Uniqueness: We have tQ1, ¨ ¨ ¨ , Qnu is unique (already shown).

Hence we see P d “ P 1d1 which implies rpP dq “ rpP 1d1

q hence P “ P 1. Further,
P d “ P d1 implies d “ d1 because P k “ P k`1 implies P k

P “ P k`1
P implies PP “ 0 by

Nakayama lemma, hence impossible (since it is a domain).
pdq ùñ pcq: Let Q be primary, Q “

ś

P di
i implies that rpQq “

Ş

rpP di
i q “

Ş

Pi.
Also rpQq prime hence rpQq “

Ş

Pi hence rpQq “ Pi for some i. This shows
Q “ P di

i .
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11
Motivational Examples

11.1 Chains of Modules

Let R be a ring, R ´ Mod “ category of R´modules (left R´modules).

Definition 11.1.1. A chain complex (in R ´ Mod) is C˚ “ pCnqně0 and d˚ “

pdnqną0 where Cn is R´module, dn : Cn Ñ Cn´1 is R´module homomorphism
such that dn ˝ dn`1 “ 0

¨ ¨ ¨ ÝÑ C2
d2

ÝÑ C1
d1

ÝÑ C0.

Example 11.1.2. TakeC˚ associated to the simplicial complex such thatCn “ Zxn´

celly, dn :“boundary maps”.

Definition 11.1.3. Let pC˚, d˚q be chain complex (in R ´ Mod), we denote that
ZnpC˚q “ kerpdnq Ď Cn, namely the “cycles” and BnpC˚q “ Impdn`1q Ď Cn
“boundaries”. Since dndn`1 “ 0 and Bn Ď Zn and we can take quotient
HnpC˚q “ Zn{Bn, the n´th homology group of C˚.

Example 11.1.4. Consider the torus with H1pC˚q “ Z cycles{Z contractible cycles.

Remark 11.1.5. Chain C˚ is exact if and only if HnpC˚q “ 0@n. Hence HnpC˚q is
the measure of non-exactness of the n´th step.

Definition 11.1.6. Let C˚, C
1
˚ be chain complexes. A chain map f˚ : C˚ ÝÑ C 1

˚

is f˚ “ pfnqn ě 0, and fn : Cn ÝÑ C 1
n module homomorphism such that “every

squares commute” in

¨ ¨ ¨ Cn Cn´1 ¨ ¨ ¨ C0

¨ ¨ ¨ C 1
n C 1

n´1 ¨ ¨ ¨ C 1
0

dn

fn fn´1

d1
n

and df “ fd1.
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Example 11.1.7. If C˚, C
1
˚ are associated with some simplicial complexes... To be

filled.

Remark 11.1.8. If f˚ : C˚ ÝÑ C 1
˚ is a chain map, then for all n, fn sends cycles to

cycles (boundaries to boundaries).
In fpZnpC˚qq Ď ZnpC 1

˚q because dfpZnpC˚qq “ fdpZnpC˚qq “ f0 “ 0. Moreover,
fnpBnpCnqq Ď BnpC 1

˚q because fpdCn`1q “ dfpCn`1q Ď Imd.

Definition 11.1.9. Let f˚ : C˚ ÝÑ C 1
˚ be a chain map, by preceding remark we can

define
fn : HnpC˚q ÝÑ HnpC 1

˚q,

α ` BnpC˚q ÞÝÑ fnpαq ` BnpC 1
˚q

where α P ZnpC˚q. This is a well-defined homomorphism by preceding remark
(sends boundaries to boundaries).

Remark 11.1.10. Composition of chain maps are chain maps, that is, fn ˝ gn “

fn ˝ gn (functoriality).

Definition 11.1.11 (Chain Homotopy). Let f˚, g˚ : C˚ ÝÑ C 1
˚ be chain maps. We

say that f˚, g˚ are homotopy equivalent if there exists h “ phnqně0, hn : Cn Ñ C 1
n`1

R´module homomorphism such that for all n, fn ´ gn “ hn´1dn ` d1
n`1hn. It can

be viewed as

¨ ¨ ¨ Cn`1 Cn Cn´1 ¨ ¨ ¨

¨ ¨ ¨ C 1
n`1 C 1

n C 1
n´1 ¨ ¨ ¨

dn`1 dn

fn gn
hn

fn´1 gn´1
hn´1

d1
n`1 d1

n

where we have notation f˚ »
h
g˚.

Example 11.1.12. To be filled.

Lemma 11.1.13. If chain maps f˚, g˚ : C˚ ÝÑ C 1
˚ are homotopy equivalent, then fn “

gn : HnpC˚q Ñ HnpC 1
˚q.

Proof. Suppose f˚ »
h
g˚, for all α P ZnpC˚q, fnpαq´gnpαq “ dhpαq`hdpαq “ dhpαq P

BnpC 1
˚q. Hence fnpαq “ fnpαq ` BnpC 1

˚q “ gnpαq ` BnpC 1
˚q “ gnpαq.

Definition 11.1.14. Two chain complexC˚, C
1
˚ are homotopy equivalent if there is

chain maps f˚ : C˚ ÝÑ C 1
˚ and g˚ : C 1

˚ ÝÑ C˚ such that g˚˝f˚ » IdC˚
, f˚˝g˚ » IdC1

˚
.

Corollary 11.1.15. If C˚, C
1
˚ are homotopy equivalent then for all n, we have HnpC˚q »

HnpC 1
˚q isomorphism of R´module.
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Proof. By lemma gn ˝fn “ IdHnpC˚q and fn ˝ gn “ IdHnpC1
˚q. Hence fn, gn are isomor-

phism.

Definition 11.1.16. We have the following definitions:

• A resolution for a R´module M is an exact sequence of the form ¨ ¨ ¨ ÝÑ

C2 ÝÑ C1 ÝÑ C0 ÝÑ M ÝÑ 0. Abbreviated by C˚ ÝÑ M ÝÑ 0.

• A free resolution is a resolution such that for all n,Cn is free R´module:
pC˚ ÝÑ M ÝÑ 0q.

Lemma 11.1.17. We have the following statements:

(a). For any R´module N , there exists free R´module F and ϕ : F ÝÑ N surjective
R´module homomorphism. That is, Dfree F ↠

Dϕ
@N .

(b). For any F free, for any ϕ : F Ñ N , for any ψ : N 1 ↠ N surjective homomorphism,
there exists ϕ1 such that ψ ˝ ϕ1 “ ϕ. That is, the diagram

F free

N 1 N

Dϕ1 @ϕ

@ψ

commutes.

Proof. Exercise. Easy consequence of the fact that if F is free with basis tbiu, then
for any M module, for all txiu Ď M , there is ϕ : F ÝÑ M such that ϕpbiq “ xi.

Theorem 11.1.18 (Fundamental Theorem of Homological Algebra). We have

• for all M , R´module, there is free resolution C˚ ÝÑ M ÝÑ 0, and

• for all f : M Ñ M 1 homomorphism, for any free resolution, C˚ ÝÑ M ÝÑ 0 and
C 1

˚ ÝÑ M 1 ÝÑ 0. There is f˚ : C˚ ÝÑ C 1
˚ chain map “lifting f”, the diagram

¨ ¨ ¨ C0 M 0

¨ ¨ ¨ C 1
0 M 1 0

d0

f0 f

d1
0

commutes with d1
0f0 “ fd0. Moreover, we have

– the free resolution C˚ of M is unique up to homotopy, and

– the lifting f˚ of f is unique up to homotopy.
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Proof. We see

• Existence of free resolution: applying (a) to N “ M gives C0, d0 that C0

d0
↠

M Ñ 0. Applying (a) to N “ kerpd0q gives C1, d1, ¨ ¨ ¨ , etc.

• Existence of chain map lifting f :

Cn Cn´1 ¨ ¨ ¨ C0 M “ C´1 0

C 1
n C 1

n´1 ¨ ¨ ¨ C 1
0 M 1 “ C 1

´1 0

? fn´1 f“f´1

for all n ě 0, we need to find fn from fn´1 (such that d1f “ fd).

Observe that fn´1˝dnpCnq Ď kerpd1
n´1q since d1

n´1˝fn´1˝dn “ d1
n´2˝d1

n´1˝fn “

0 since d1
n´2 ˝ d1

n´1 “ 0. So we have

Cn free

C 1
n Impd1

nq “ kerpd1
n´1q

D

fn´1dn

d1
n

By (b), there is fn : Cn ÝÑ C 1
n such that d1

nfn “ fn´1dn.

Then we see

• Uniqueness of f˚ up to homotopy. Suppose f˚, g˚ both lift f : M Ñ M 1.
Then ln “ fn ´ gn lifts 0 : M Ñ M 1. We want to find phnq, hn : Cn Ñ C 1

n`1

such that l “ hd ` d1h. How about h0? We have the diagram

C0 M

C 1
1 C 1

0 M 1

l0

d0

h0
l“0

d1
1 d1

0

and want l0 “ d1
1h0. Since d1

0l0 “ 0d0 “ 0, we have

C0

C 1
1 kerpd1

0q “ Impd1
1q

Dh0
l0

d1
1

commutes. By (b), there is h0 such that l0 “ d1
1 ˝ h0.



11.2. PROJECTIVE MODULES 78

For n ą 0, we want hn such that d1
n`1hn “ ln ´ hn´1dn such that

Cn Cn´1

C 1
n`1 C 1

n

dn

ln
hn

hn´1

d1
n`1

commutes. We have also

Cn

C 1
n`1 kerpd1

nq “ Impd1
n`1q

ln´hn´1dn .

(Indeed, d1
npln ´ hn´1dnq “ ln´1dn ´ d1

nhn´1dn “ pln´1 ´ d1
nhn´1qdn “

hn´2dn´1dn “ 0). By (b), there is hn such that d1
n`1hn “ ln ´ hn´1dn.

• Uniqueness of free resolution up to homotopy: let C˚ Ñ M Ñ 0, C 1
˚ Ñ M Ñ

0 be free resolution of M . There is f˚ : C˚ Ñ C 1
˚ lifted Id : M Ñ M , and

g˚ : C 1
˚ Ñ C˚ lifted Id : M Ñ M . Then g˚f˚ : C˚ Ñ C˚ lifts IdM implies that

g˚f˚ » IdC˚
and f˚g˚ : C 1

˚ Ñ C 1
˚ lifts IdM implies that f˚g˚ » IdC1

˚
.

Generalizations? Projective modules.

11.2 Projective Modules

Definition 11.2.1. A R´module P is projective if it satisfies

P

M N

Dϕ1
@ϕ

@ψ surjective

commuting (prop (b) of free module).

Remark 11.2.2. We have

• By lemma 11.1.17 (b), any free module is projective. By (a), for any N P

R ´ Mod, there is P projective and ϕ : P ↠ N surjective. “R ´ Mod has
enough projective.” This implies that for any M P R ´ Mod, there exists
P ˚ Ñ M Ñ 0 projective resolution of M .
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• The theorem remains true if we replace “free” by “projective” everywhere.
(existence of projective resolution by above, existence of f˚, uniqueness up
to homotopy only use pbq “ definition of projective).

• Reversing arrows.

Definition 11.2.3. A R´module E is injective if it satisfies

M N

E

@ψ injective

@ϕ
Dϕ1

commuting.

Definition 11.2.4. An injective coresolution for a R´module M is

0 ÝÑ M
d0

ÝÑ E0
d1

ÝÑ E1 ÝÑ E2 ÝÑ ¨ ¨ ¨

exact sequence with En injective module.

Question: Do they exist? Existence amounts to showing for anyN , there exists
E injective and N ↣ E injective homomorphism.

Exercise: show that when they exist, injective coresolution are unique up to
homotopy.

More general categories: How to define “exact sequence” in a category? How
about surjective, injective, kernel, images (Hn “ Zn{Bn)? This leads us to Abelian
categories

C˚ M 0

F pC˚q FM 0

F .
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Additive Categories

12.1 Category Notations

Let C be a category, then

• A P C means A is an object of C.

• For objects A,B P C, we denote CpA,Bq, which is the set MorCpA,Bq of
C´morphisms from A to B.

• We denote Set the category of sets.

• We denote R ´ Mod category of left R´module, and Mod ´ R category of
right R´module.

• We denote Ab “ Z´Mod category of Abelian group.

Definition 12.1.1. We have

• f P CpA,Bq is a monomorphism if for all X P C, @g1 ‰ g2 P CpX,Aq, we
have fg1 ‰ fg2, that is

X A B

g1

g2

f

(i.e., fg1 “ fg2 implies g1 “ g2 can simplify f on the left). We write f : A ↣
B to indicate f is a monomorphism.
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• f P CpA,Bq is an epimorphism if for any X P C, @g1 ‰ g2 P CpB,Xq, g1f ‰

g2f . We write f : A↠ B, that is,

A B X
f

g1

g2

.

Example 12.1.2. In Set and in R ´ Mod, f is monomorphism if and only if f is
injective. Also f is epimorphism if and only if f is surjective.

Notation: For f P CpA,Bq, we denote f# : g ÞÑ fg where g is in CpX,Aq and
fg in CpX,Bq. Similarly we denote #f : g ÞÑ gf where the first g is in CpB,Xq

and gf in CpA,Xq.

Remark 12.1.3. We have f is monomorphism if and only if f# is injective. And f
is epimorphism if and only if #f injective.

Remark 12.1.4. We have f is isomorphism implies that f is monomorphism and
epimorphism (converse not always true).

Definition 12.1.5. An object P P C is projective if it satisfies

P

A B

@g
Dg1

h

and for all A,B P C, @g : P Ñ B, @h : A↠ B, there is g1 : P Ñ A such that hg1 “ g.
Similarly, an object E P C is injective if it satisfies

A B

E

g

h

Dg1 .

12.2 Additive Categories

Definition 12.2.1. An additive category is a category C such that for anyA,B P C,
CpA,Bq is an additive group and we have the following:

(1). Operation is biadditive pf1 ` f2qg “ f1g ` f2g and gpf1 ` f2q “ gf1 ` gf2.

(2). The category C has a zero object 0C.
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(3). Any finite tuple of objects A1, ¨ ¨ ¨ , An have a product. That is,
śn

i“1Ai and a
coproduct

šn
i“1Ai.

Lemma 12.2.2. In C additive category, we have
śn

i“1Ai »
šn

i“1Ai.

Example 12.2.3. Some examples of additive category:

• R ´ Mod, Mod ´ R.

• R ´ mod, mod ´ R, the category of finitely generated R´module.

Definition 12.2.4. Let f P CpA,Bq, a kernel of f is K P C and q P CpK,Aq such
that

(1). we have fq “ 0, and

(2). for any X P C, for any g P CpX,Aq such that fg “ 0, there exists rg such that
g “ qrg. We have the diagram

X

K A B

@g
0Drg

q f

commutes.

Example 12.2.5. In R ´ Mod, and f as R´module homomorphism, let K “ ta P

A|fpaq “ 0u, and
q : K ÝÑ A,

a ÞÝÑ a.

Then pK, qq is the kernel of f in R ´ Mod.

Lemma 12.2.6. When f has a kernel, they are unique up to C´isomorphism, that is, we
have K, q kernel if the diagram

@X K

A B

g

D!

0

f

commutes.
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Remark 12.2.7. Let C be additive category and let f P CpA,Bq, for any X P C, the
map

f# : CpX,Aq ÝÑ CpX,Bq,

g ÞÝÑ fg,

is homomorphism of additive group. Its kernel (in group sense) is kerpf#q “

tg|fg “ 0u.

Lemma 12.2.8. Let C be additive category and f P CpA,Bq, then pK, qq is the kernel of
f if and only if for any X P C, we have

• Impq#q “ kerpf#qpDrgq,

• q# injective pD!rgq.

That is, we have the diagram

X

K A B

0
@g

D!rg

q f

commutes if and only if for any X P C, we have 0 ÝÑ CpX,Kq
q#

ÝÑ CpX,Aq
f#

ÝÑ

CpX,Bq is exact sequence of additive group.

Corollary 12.2.9. A C´morphism f is a monomorphism if and only if p0, 0q is the kernel
of f .

Proof. We have f monomorphism if and only if f# is injective if and only if
kerpf#q “ 0.

pðùq : if p0, 0q is a kernel of f , then kerpf#q “ Imp0#q “ 0, hence f is monomor-
phism.

pùñq : If f is monomorphism, then kerpf#q “ 0 implies that q “ 0Cp0,Aq satisfies

• Impq#q “ 0 “ kerpf#q,

• q# is injective (since CpX, 0q “ t0u).

Hence the corollary.

Remark 12.2.10. If pK, qq is kernel of f then q is monomorphism (since q# is injec-
tive).

Definition 12.2.11. A cokernel of f P CpA,Bq is pC, pq, C P C, p P CpB,Cq such
that
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(1). pf “ 0,

(2). for any X P C, @g P CpB,Xq such that gf “ 0, there exists unique g : C Ñ X
such that g “ pg, that is, the diagram

A B C

X
0

f p

@g
D!g

commutes.

Remark 12.2.12. In R ´ Mod, let f P HompA,Bq, let C “ B{Impfq, p : B Ñ C
quotient map, then pC, pq is a cokernel of f in R ´ Mod. Indeed, if gf “ 0, it
means that Impfq Ď kerpgq, and we can define

g : C ÝÑ X,

b ` Impfq ÞÝÑ gpbq,

and it is unique choice.

Lemma 12.2.13. Cokernels are unique up to C´isomorphism. Further, we have that
pC, pq cokernel of f if and only if we have both

• kerp#fq “ Imp#pq, and

• #p is injective

are satisfied, if and only if @X P C, we have 0 Ñ CpC,Xq
#p

ÝÑ CpB,Xq
#f

ÝÑ CpA,Xq is
exact (recall that #p : g ÞÑ gp).

Remark 12.2.14. If pC, pq is a cokernel then #p is epimorphism.

12.3 Exact Sequences, Exact Functors

Definition 12.3.1. Let C be additive category, a left exact sequence in C is 0 Ñ

A
f

ÝÑ B
g

ÝÑ C with pA, fq is kernel of g.
Similarly, a right exact sequence in C is A f

ÝÑ B
g

ÝÑ C Ñ 0 with pC, gq is
cokernel of g.

Further, a short exact sequence in C is 0 Ñ A
f

ÝÑ B
g

ÝÑ C Ñ 0, with pA, fq is
kernel of g and pC, gq cokernel of f .

Remark 12.3.2. Match the classical definitions in R ´ Mod.
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Definition 12.3.3. Let C,D be additive categories, a covariant or contravariant
functor F : C Ñ D is left exact if Fpshortexactq is left exact.

Similarly, a covariant or contravariant functor F : C Ñ D is right exact if
Fpshortexactq is right exact.

Further, we say a covariant or contravariant functor F : C Ñ D is exact if
Fpshortexactq is short exact.

Explicitly, functor F covariant left exact if 0 Ñ A Ñ B Ñ C Ñ 0 exact implies
that 0 Ñ FA Ñ FB Ñ FC exact. Functor F contravariant left exact if 0 Ñ A Ñ

B Ñ C Ñ 0 exact implies that 0 Ñ FC Ñ FB Ñ FA exact.

Definition 12.3.4. Let C be additive category and let X P C, we define

• HomCpX,´q to be the covariant functor C Ñ Ab defined by

A ÞÝÑ CpX,Aq,

f P CpA,Bq ÞÝÑ f# : CpX,Aq Ñ CpX,Bq.

• HomCp´, Xq to be the contravariant functor C Ñ Ab defined by

A ÞÝÑ CpA,Xq,

f ÞÝÑ# f.

Remark 12.3.5. By lemmas about kernel, cokernel, we use that HomCp´, Xq and
HomCpX,´q are left exact.

Proposition 12.3.6. We have

• if X P C is injective, then HomCp´, Xq exact.

• We have X P C is projective implies that HomCpX,´q exact.

Proof. Homework.



13
Abelian Categories, Chains, and Homology

13.1 Abelian Categories

Definition 13.1.1. An additive category C is abelian if

(a). Every C´morphism has a kernel and a cokernel.

(b). If f P CpA,Bq is monomorphism and g P CpB,Cq is epimorphism, then
pA, fq is a kernel of g if and only if pC, gq is cokernel of f (in this case 0 Ñ

A
f

Ñ B
g

Ñ C Ñ 0 is exact).

(c). Every C´morphism f can be factored as f “ f 1f2 with f2 epimorphism and
f 1 monomorphism, that is, we have the diagram

A B

X

f

f2 f 1

commutes.

Lemma 13.1.2. Let C abelian category, let f P CpA,Bq, suppose f “ f 1f2 where f 1

monomorphism and f2 epimorphism, then

(a). We have pK, qq is kernel of f if and only if pK, qq is kernel of f2. In this case

0 Ñ K
q

Ñ A
f2

Ñ X Ñ 0 exact.

(b). We have pC, pq is cokernel of f if and only of pC, pq cokernel of f 1. In this case

0 Ñ X
f 1

Ñ B
p

Ñ C Ñ 0 is exact.

86
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Proof of Part (a). Since f 1 monomorphism, we have f2g “ 0 if and only if fg “ 0.
Also pK, qq kernel of f if and only if (fg “ 0 ùñ D!rg, g “ qrg) if and only if
(f2g “ 0 ùñ D!rg, g “ qrg) if and only if pK, qq kernel of f2.

Definition 13.1.3. Let C abelian category and let f P CpA,Bq. If

A B

X

f

f2 f 1

commutes, then we call X an image of f and write X “ Impfq.

Lemma 13.1.4. Let C be abelian category, the image Impfq is unique up to
C´isomorphism. Moreover, Impfq » cokerpkerpfqq » kerpcokerpfqq.

Proof. Suppose

A B

X

f

f2 f 1

commutes, we need to show X “ cokerpkerpfqq. Let pK, qq be a kernel of f , then

0 Ñ K
q

Ñ A
f 1

Ñ X Ñ 0 is exact, which implies that X “ cokerpqq “ cokerpkerpfqq.
Same for other formula.

13.2 Chains

Definition 13.2.1. Let C abelian category, a C´chain is C˚ “ pCnqně0, d˚ “ pdnqną0

where dn P CpCn, Cn´1q, dn`1dn “ 0. A morphism of C´chains from C˚ to C 1
˚ is

f˚ “ pfnqně0 and fn P CpCn, C
1
nq such that fn´1dn “ d1

nfn.

Remark 13.2.2. We have C´chains and their morphisms form a category denoted
C ´ chain.

Proposition 13.2.3. We have that C additive category then C ´ chain is additive cate-
gory. Similarly, C abelian category implies C ´ chain abelian category.

Proof. We have

• f˚ ` g˚ “ pfn ` gnq, and
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• Direct sum of chains? We have C˚ ‘ C 1
˚ “ pCn ‘ C 1

nq defined by

Cn ‘ C 1
n Cn´1 ‘ C 1

n´1

Cn´1

C 1
n´1

dn‘d1
n

dnpn

d1
np

1
n

qn

q1
n

component wise and commutes. Exercise: Show that this is a direct sum in
C ´ chain.

• Kernels? Let f˚ : C˚ Ñ C 1
˚, we have

kerpfnq Cn C 1
n

kerpfn´1q Cn´1 C 1
n´1

qn

D!αn

fn

dn d1
n

qn´1 fn´1

commutes and pkerpfnq, pαnqq is kernel of f˚.

• Cokernels, factorization, etc...

Hence the result.

Definition 13.2.4 (Homology). Let C be an abelian category, let C˚, d˚ be a C ´

chain, let pZn, qnq be kernel of dn, then (since dndn`1 “ 0), there exists unique Ądn`1

such that
Cn`1 Cn

Zn

HnpC˚q

dn`1

Čdn`1
qn

pn

commutes. We define the homology HnpC˚q “ cokerp Ądn`1q.

Example 13.2.5. In R ´ Mod, we have

Ądn`1 : Cn`1 ÝÑ Zn “ kerpdnq

x ÞÝÑ dn`1pxq.

Then Hn “ cokerp Ądn`1q “ kerpdnq{Impdn`1q.
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Lemma 13.2.6. We have HnpC˚q unique up to isomorphism.

Definition 13.2.7. Let f˚ : C˚ Ñ C 1
˚ be morphism of C ´ chain, then we have

• there exists unique rfn such that

Cn`1 Cn

Zn

Z 1
n

C 1
n`1 C 1

n

fn`1

dn`1

Čdn`1

fn

qn

Ăfn

q1
n

commutes by definition of pZ 1
n, q

1
nq the kernel of d1

n.

• There exists fn such that

Cn`1 Zn HnpC˚q

C 1
n`1 Z 1

n HnpC 1
˚q

fn`1

Čdn`1

Ăfn

pn

D!fn

commutes. We define Hnpf˚q “ fn.

Lemma 13.2.8. For any n, we have Hn is a functor from C ´ chain to C such that
rHnpf˚g˚q “ Hnpf˚qHnpg˚q, HnpId˚q “ Ids which is addtive, that is, Hnpf˚ ` g˚q “

Hnpf˚q ` Hnpg˚q.

13.3 Dually, Cochain, etc

Definition 13.3.1. We define

• A C ´ cochain is C0
d1

ÝÑ C1
d2

ÝÑ C2 ÝÑ ¨ ¨ ¨ such that d2 “ 0.

• A morphism of C ´ cochain is pfnq such that fd “ d1f .
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• For pC˚, d˚q cochain, there exists Ądn`1 such that

Cn Cn`1

cokerpdnq

dn`1

pn
Čdn`1

commutes. We say the cohomology HnpC˚q “ kerp Ądn`1q.

Example 13.3.2. In R ´ Mod, we have cokerpdnq “ Cn{Impdnq. Here Ądn`1 : x `

Impdnq Ñ dn`1pxq. Then HnpC˚q “ kerp Ądn`1q “ kerpdn`1q{Impdnq.

Definition 13.3.3 (Homotopy). We say chain morphisms f˚, g˚ : C˚ Ñ C 1
˚ are

homotopy equivalent if there exists phnqně0 in CpCn, C
1
n`1q such that fn ´ gn “

hn´1dn ` d1
n`1hn. That is, we have

Cn`1 Cn Cn´1

C 1
n`1 C 1

n C 1
n´1

dn`1

fn gn

dn

hn

hn´1

d1
n`1 d1

n

commutes. We denote f˚ »
h
g˚.

Lemma 13.3.4. If f˚ »
h
g˚ then Hnpf˚q “ Hnpg˚q.

Proof. We have Hn is additive, hence we have Hnpf˚q ´ Hnpg˚q “ Hnpδnq where
δn “ hn´1dn ` d1

n`1hn. Want to show Hnpδnq “ 0. We have the diagram

¨ ¨ ¨ Zn HnpC˚q

¨ ¨ ¨ Z 1
n HnpC 1

˚q

Čdn`1 pn

Ăδn δn“Hnpδ˚q

Čdn`1
1 p1

n
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and it suffices to show p1
n

rδn “ 0. From the diagram

Cn`1 Cn

Zn

Z 1
n

C 1
n`1 C 1

n

δn`1

dn`1

Čdn`1

δn

qn

Ăδn

q1
n

we have q1
n

rδn “ δnqn “ pfn´1dn ` d1
n`1hnqqn “ d1

n`1hnqn “ q1
n

Ąd1
n`1hnqn. Since q1

n is
monomorphism, we have that rδn “ Ądn`1hnqn. Hence p1

n
rδn “ p1

n
Ądn`1hnqn “ 0 since

p1
n

Ądn`1 “ 0.

Corollary 13.3.5. If C˚, C
1
˚ are homotopy equivalent C ´ chain (that is, there exists

f˚ : C˚ Ñ C 1
˚, g˚ : C 1

˚ Ñ C˚ such that f˚g˚ “ Id, g˚f˚ “ Id), then HnpC˚q » HnpC 1
˚q

in C.



14
Derived Functors

14.1 Projective Resolutions, Injective Coresolutions

Definition 14.1.1. Let C be abelian category, a sequence of C´morphism pfnqaďnďb

is exact if there exists pn monomorphism, qn epimorphism such that fn “ qnpn,
and we have the diagram

An An`1

Xn

pn

fn

qn

commutes and
0 ÝÑ Xn

qn
ÝÑ An`1

pn`1
ÝÑ Xn`1 ÝÑ 0

short exact.

Remark 14.1.2. The sequence pfnq exact if Impfnq “ kerpfn`1q for any a ď n ď b,
where Impfnq “ pXn, pnq by abuse of notation.

Definition 14.1.3. A projective resolution of A P C is C˚, d˚ such that

¨ ¨ ¨ ÝÑ C1
d1

ÝÑ C0
d0

ÝÑ A ÝÑ 0

exact and Cn projective for any n.

Definition 14.1.4. We say that C has “enough projective” if for any X P C, there
is P P C projective and f : P ↠ X epimorphism.

Lemma 14.1.5. If C has enough projective then any object has a projective resolution.

92
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Proof. Consider the diagram

¨ ¨ ¨ C1 C0 A

kerpd0q

d0

etc...

Proposition 14.1.6. We have

• If C˚ Ñ A,C 1
˚ Ñ A1 are projective resolution, then any f P CpA,A1q can be lifted

to a chain map f˚ : C˚ Ñ C 1
˚ such that

C1 C0 A

C 1
1 C 1

0 A1

f1 f0 f

commutes.

• Projective resolution are unique up to homotopy.

Proof. “Same” as in R ´ Mod.

Then we define things dually:

Definition 14.1.7. An injective coresolution for A P C is

0 ÝÑ A
d0

ÝÑ C0
d1

ÝÑ C1 ÝÑ ¨ ¨ ¨

exact with Ci injective.

Definition 14.1.8. We say C has “enough injective” if for any X P C, we have
X ↣ E injective object.

Theorem 14.1.9. If C has enough injective, then any object has a injective coresolution
and it is unique up to homotopy. Moreover, any C´morphism can be lifted to a cochain
map between the injective coresolutions (lift is unique up to homotopy).

Definition 14.1.10. Let F : C Ñ D be additive functor between abelian categories,
F either left or right exact. If F is right (resp. left) exact we define the left (resp.
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right) derivative LnFpresp. RnFq : C Ñ D as follows

Derivative
F covariant contravariant
right exact LnFpAq “ HnpFP˚q, and

P˚ Ñ A projective resolu-
tions of A.

LnFpAq “ HnpFE˚q, and
A Ñ E˚ injective coresolu-
tions of A.

left exact RnFpAq “ HnpFE˚q, and
A Ñ E˚ injective coresolu-
tions of A.

RnFpAq “ HnpFP˚q, and
P˚ Ñ A projective resolu-
tions of A.

.

More precisely, for F covariant right exact

• for any A P C, we have LnpFpAqq “ HnpFP˚q where ¨ ¨ ¨
dz

ÝÑ P1
d1

ÝÑ P0 ÝÑ

A ÝÑ 0 is projective resolution, and FP˚ is the D´chain ¨ ¨ ¨
Fdz
ÝÑ FP1

Fd1
ÝÑ

FP0.

• For any f P CpA,Bq, we have LnpFpfqq “ HnpFf˚q where f˚ is a lift of f
between projective resolution P˚ Ñ A and P 1

˚ Ñ B and Fpf˚q “ pFfnqně0 is
the corresponding D´chain morphism between FP˚ and FP 1

˚.

Remark 14.1.11. Derivatives are only defined if C has enough injective or projec-
tive (depending on the case).

Lemma 14.1.12. Derivatives are well-defined up to D´isomorphism and L0F “ F for
F right exact, and R0F “ F for F left exact.

Proof. For F covariant right exact,

• let A P C and P˚, P
1
˚ be projective resolution of A by previous theorem, P˚ »

h

P 1
˚ for some homotopy h. Then F additive implies that FP˚ » FP 1

˚ implies
HnpFP˚q » HnpFP 1

˚q (we have f˚g˚ »
h
Id implies that Fpf˚qFpg˚q »

Fh
Id).

• For f P CpA,Bq, let f˚, f
1
˚ be lifts of f , by theorem f˚ »

h
f 1

˚ we have Fpf˚q »
Fh

Fpf 1
˚q. This implies that Hnpf˚q “ Hnpf 1

˚q.

• We have L0FpAq “ H0pFP˚q for P˚ Ñ A projective resolutions of A. Then
F right exact and P˚ Ñ A Ñ 0 exact which implies that FP1

Fd1
ÝÑ FP0

Fd0
ÝÑ

FA ÝÑ 0 exact. Thus cokerpFd1q “ FA.
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14.2 Long Exact Sequences

Theorem 14.2.1 (Snake Lemma). Let C be an additive category, suppose C´diagram

A1 A A2 0

0 B1 B B2

d1 d d2

commutes and is row exact. Let pK, qq, pK 1, q1q, pK2, q2q kernels of d, d1, d2 and
pC, pq, pC 1, p1q, pC2, p2q cokernels, then there is α, β, α1, β1, δ, such that

K 1 K K2

A1 A A2

B1 B B2

C 1 C C2

α β

α1 β1

δ

(the diagram borrows from here) commutes and

K 1 α
ÝÑ K

β
ÝÑ K2 δ

ÝÑ C 1 α1

ÝÑ C
β1

ÝÑ C2

is exact.

Theorem 14.2.2. Let C be abelian category, if 0 Ñ A˚ Ñ B˚ Ñ C˚ Ñ 0 is exact
sequence of C´chains, then there exists pδnqną0 such that

¨ ¨ ¨ Ñ HnpA˚q Ñ HnpB˚q ÝÑ HnpC˚q
δn

ÝÑ Hn´1pA˚q Ñ Hn´1pB˚q Ñ ¨ ¨ ¨

is exact.

Lemma 14.2.3. Alternative definition of HnpC˚q for C˚ a C´chain is

Cn Cn´1

cokerpdn`1q kerpdn´1q

dn dn´1

Ddn

https://texample.net/tikz/examples/snake-lemma/
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and Hn´1 “ cokerpdnq (easy to see from definition of Hn). Also Hn “ kerpdnq (not
obvious it coincide with definition of Hn).

Example 14.2.4. Check this in R ´ Mod.

Proof of Theorem 14.2.2. Let n ą 0, then

0 An Bn Cn 0

0 An´1 Bn´1 Cn´1 0

dn dn dn

commutes and row exact. By snake lemma, we have

0 ÝÑ kerpdAn q ÝÑ kerpdBn q ÝÑ kerpdCn q

is exact and
cokerpdAn q ÝÑ cokerpdBn q ÝÑ cokerpdCn q ÝÑ 0

is exact implies that

cokerpdAn`1q cokerpdBn`1q cokerpdCn`1q

kerpdAn´1q kerpdBn´1q kerpdCn´1q

dn dn dn

commutes. Hence snake goes through Hn:

HnpAq ÝÑ HnpBq ÝÑ HnpCq
δ

ÝÑ Hn´1pAq ÝÑ Hn´1pBq ÝÑ HnpCq.

Same story for cohomology.

Theorem 14.2.5. Let C,D be abelian categories, let F : C Ñ D be left or right exact
additive functors, let

0 ÝÑ A
f

ÝÑ B
g

ÝÑ C ÝÑ 0

be short exact in C, then there is long exact sequence in D, such that

• for F covariant right exact

¨ ¨ ¨
δ

ÝÑ L1
pFAq ÝÑ L1FB ÝÑ L1FC

δ1
ÝÑ FA

Ff
ÝÑ FB

Fg
ÝÑ FC ÝÑ 0

exact.
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• For F covariant left exact,

0 ÝÑ FA ÝÑ FB ÝÑ FC
δ

ÝÑ R1FA

exact.

• For F contravariant right exact,

¨ ¨ ¨ ÝÑ L1FA
δ1

ÝÑ FC ÝÑ FB ÝÑ FA ÝÑ 0

exact.

Proof for F covariant right exact. Claim 1: there is projective resolutions P 1
˚ Ñ

A,P˚ Ñ B,P 2
˚ Ñ C and chain maps f˚, g˚ lifting f and g and such that

¨ ¨ ¨ Ñ 0 Ñ P 1
˚

f˚
Ñ P˚

g˚
Ñ P 2

˚ Ñ 0

is exact.
Claim 2: The sequence 0 Ñ FP 1

˚ Ñ FP˚ Ñ FP 2
˚ Ñ 0 is exact. Then can apply

the long exact sequence of homology on this D´chain which gives the result.

Proof of Claim 1 (Horseshoe lemma). We have the diagram

P 1
1 P 2

1

P 1
0 P 2

0

A B C 0

d1
1 d2

1

d1
0 d2

0

f g

.

Let P 1
n Ñ A be projective resolution of A and P 2

n Ñ C be projective resolution of
C. Let Pn “ P 1

n ‘ P 2
n . Let p1

n : Pn Ñ P 1
n, p

2
n : Pn Ñ P 2

n be projection: pPn, p
1
n, p

2
nq is

product of P 1
n, P

2
n via C. Let q1

n : P 1
n Ñ Pn, q

2
n : P 2

n Ñ Pn be embedding: pPn, q
1
n, q

2
nq

is coproduct.
We can choose them such that p1

nq
1
n “ IdP 1

n
, p2

nq
1
n “ 0, p1

nq
2
n “ 0, p2

nq
2
n “ Id, q1

np
1
n`

q2
np

2
n “ IdPn . Then d0 :

P 1
0 P0 P 2

0

A B C

q1
0

d1
0

fd1
0

p2
0

d0? d2
0

h

f g
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We have g epimorphism, p2
0 projective implies that there is h, gh “ d2

0. Let d0 “

fd1
0p

1
0 ` hp2

0. It commutes and d0 is epimorphism (check).
How about d1? We have d0, d1

0, d
2
0 are epimorphism, then snake lemma implies

0 kerpd1
0q kerpd0q kerpd2

0q 0

P 1
0 P0 P 2

0q1
0

exact. Hence we have same situation as for d0:

0 P 1
1 P1 P 2

1 0

kerpd1
0q kerpd0q kerpd2

0q

? .

Then left for homework that FpP 1
n ‘ P 2

nq “ FpP 1
nq ‘ FpP 2

nq implies that

0 ÝÑ FPn ÝÑ FPn ÝÑ FP 2
n ÝÑ 0

is exact.

14.3 Tor Functors

Definition 14.3.1. LetR be commutative ring, letA beR´module, let FA “ Ab´ :
R ´ Mod Ñ R ´ Mod defined by

@B P R ´ Mod,FApBq “ A b B,

@f P R ´ Mod homomorphism, FApfq “ IdA b f.

Say FA covariant additive functor, we have seen before that FA is right exact, then

TornpA,Bq “ LnFApBq “ HnpA b P˚q

where the last term is from FApP˚q, where P˚ Ñ B Ñ 0 is projective resolution for
B. In other words, TornpA,Bq “ kerpIdA b dBn q{ImpIdA b dBn`1q where ¨ ¨ ¨ Ñ P1

d1
Ñ

P0 Ñ B Ñ 0.
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Example 14.3.2. Let R “ Z, A a Z´module (additive group) and B “ Z{nZ, then
TornpA,Bq “ kerpIdA b dnq{ImpIdA b dn`1q. Take P˚ to be 0 Ñ Z d1

Ñ Z Ñ Z{nZ Ñ 0
where d1pxq “ nx. Then

Tor0pAZ{nZq “ kerp0q{ImpIdA b d1q “ A b Z{A b nZ » A{nAp» A b Z{nZq.

Also
Tor1pA,Z{nZq “ kerpIdA b d1q{0 » kerp rd1q

by A b Z » A “ ta P A|na “ 0u where rd1 : A Ñ A by x ÞÑ nx. Further,

TornpA,Z{nZq “ 0, @n ą 0.

Proposition 14.3.3. We have TornpA,Bq » TornpB,Aq.

14.4 Ext Functors

Definition 14.4.1. Let C be abelian category and let A P C, the functor F “

HomCpA,´q : C Ñ Ab is covariant additive and left exact and

@B P C,FpBq “ CpA,Bq,

@f P CpB,B1
q,Fpfq “ f#

where f# is
CpA,Bq Ñ CpA,B1

q

g ÞÑ fg.

Then ExtnpA,Bq “ RnFpBq “ HnpCpA,B˚qq where the last term is from FpB˚q

where 0 Ñ B Ñ B˚ injective coresolution of B. Explicitly, take

0 B B0 B1 ¨ ¨ ¨ Bn

A

dn dn`1

g
h

,

for any n ě 0, we have

ExtnpA,Bq “ kerpdn`1#q{Impdn#q

“ tg P CpA,Bnq|dn`1g “ 0u{tdnh|h P CpA,Bn´1qu.
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Remark 14.4.2. Let B P C, rF “ HomCp´, Bq : C Ñ Ab contravariant left exact. By
definition, Rn

rF pAq “ HnpCpA˚, Bqq where A˚ Ñ A Ñ 0 projective resolution of
A. Explicitly we have

A1 A0 A ¨ ¨ ¨ An

B

d1 dn`1 dn

and Rn
rF pAq “ kerp#dn`1q{Imp#dnq

“ tg P CpAn, Bq|gdn`1 “ 0u{thdn|h P CpAn´1, Bqu.

Theorem 14.4.3. We have HnpCpA,Bqq » HnpA˚, Bq so both give ExtnpA,Bq. In fact,
both are isomorphic to the additive group

Gn “ tf˚ : Apnq
Ñ Bpnq chain mapu{homotopy

where

Apnq “ An`1 An ¨ ¨ ¨ A0 A 0

Bpnq “ 0 B B0 ¨ ¨ ¨ ¨ ¨ ¨ Bn`1

dAn`1

f0 0 .

Sketch of Proof. Let f˚ : Apnq Ñ Bpnq and f˚ “ pbiq0ďiďn`1 chain map. By definition
of chain map f0 P kerp#dAn`1q and fn`1 P kerpdBn`1#q. Moreover (to check) for
any f0 P kerp#dAn`1q, there is f˚ lifting of f0 to Apnq Ñ Bpnq and f˚ is unique up to
homotopy becauseA˚ Ñ A Ñ 0 exact, andB˚ injective. For any fn`1 P kerpdBn`1#q

there is f˚ lifting, unique up to homotopy. This gives surjective homomorphism

ϕ : kerp#dAn`1q ÝÑ Gn,

ψ : kerpdn`1#q ÝÑ Gn.

Moreover (check) kerϕ “ Imp#dAn and kerψ “ ImpdBn#q. Hence the isomorphism

An

B

.
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Definition 14.4.4. Ext

An`1 An An´1 ¨ ¨ ¨ A0 A 0

0 B B0 ¨ ¨ ¨ Bn´1 Bn Bn`1

dn`1

f0 f1

d0

fn fn`1 .

Additional interpretation of Extn, for n ą 0 let ϵnpA,Bq “ t0 Ñ B Ñ C1 Ñ

¨ ¨ ¨ Ñ Cn Ñ A Ñ 0 exact sequenceu{ „ where

0 Ñ B Ñ C˚ Ñ A Ñ 0 „ 0 Ñ B Ñ C 1
˚ Ñ A Ñ 0

if there is g˚ : C˚ Ñ C 1
˚ chain map such that

C1 ¨ ¨ ¨ Cn

A B

C 1
1 ¨ ¨ ¨ C 1

n

g1 gn

commutes.
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The Category R-Mod Has Enough Injective

Definition 15.0.1. For any

@A B

E

@α

@f D rf

commutes, for any α : A Ñ B injective R´module homomorphism, for any f :

A Ñ E homomorphism, there is rf : B Ñ E such that f “ rfα.

Lemma 15.0.2 (Baer’s Criterion). A R´module E is injective if and only if for any
I Ď R ideal, for any f : I Ñ E, there is rf : R Ñ E, f “ rfϵ where ϵ : I Ñ R is the
inclusion map.

Proof. pùñq : Obvious ϵ is injective homomorphism.
pðùq : Suppose E satisfies this condition, let

α : A Ñ injective homomorphism,

f : A Ñ E homomorphism.

Want to show that there is rf : B Ñ E such that f “ rfα. Let Ω “ tpX, hq, X Ď

B submodule and h : B Ñ E, f “ hαu ordered by pX, hq ď pX 1, h1q if X Ď X 1 and
h|1
X “ h.

By Zorn’s Lemma, there is maximal element pX, hq P Ω. If X “ B, suppose
not, let b P BzX , let I “ tr P R|rb P Xu. This is ideal of R. By hypothesis (applied
to g : I Ñ E by r ÞÑ hprbq). There is g : R Ñ E such that r P I, rgprq “ hprbq. Define

X 1
“ X ` pbq,

102
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h1 : X 1
Ñ E,

x ` rb ÞÑ hpXq ` rgprq.

We see pX, hq ă pX 1, h1q contradicting the maximality of pX, hq.

Definition 15.0.3. Let R be a domain. A R´module M is divisible if @x P M, @d P

R, Dy P M such that dy “ x.

Corollary 15.0.4. IfR is PID, then aR´moduleE is injective if and only ifE is divisible.

Proof. (ðù): Let E be divisible, we use Baer’s criterion to show E is injective.
Let I Ď R ideal, let ϵ : I Ñ R inclusion map, let f : I Ñ E be R´module
homomorphism. Then R PID implies that I “ pdq. Let x “ fpdq and let y such
that dy “ x. We can define rfp1q “ y and rfprq “ ry and check that f “ rfϵ.

(ùñ): Let E injective, let x P E, let d P R, let f : pdq Ñ E such that fprdq “ rx.
Then there is rf : R Ñ E such that f “ f̃ ϵ. Then y “ f̃p1q satisfies dy “ f̃pdq “

fpdq “ x.

Example 15.0.5. The modules Q and Q{Z are divisible Z´modules, hence injec-
tive Z´modules.

Theorem 15.0.6. For any ring R, the category R ´ Mod has enough injectives: for any
M left R´module, there is E injective R´module and M ↣ E injective R´module
homomorphism (same holds for Mod ´ R category of right R´modules).

Definition 15.0.7. We call the dual of a left/right R´module is the right/left
R´module. We write M^ “ HomZpM,Q{Zq. IfM is leftR´module, the R´action
is defined by @r P R, @f P HomZpM,Q{Zq such that

pf ¨ rqpxq :“ fprxq.

This is a R´action (pf ¨ r ¨ sqpxq “ pf ¨ rqpsxq “ fprsxq “ pf ¨ prsqqpxq). If R is right
R´module we define

pr ¨ fqpxq :“ fpxrq.

Proposition 15.0.8. If F is a free right R´module, then F^ is injecitve left R´module.

Lemma 15.0.9. In C abelian, we have E injective if and only if HomCp´, Eq is exact.

Lemma 15.0.10. In C abelian, for any i, we have if Ei injective then
À

iEi is injective.

Proof. Homework.

Remark 15.0.11. For any A,B that are left R´modules, say HomRpA,Bq “

tf left R´module homomorphismu is a right R´module with R´action defined
by for any r P R, @f P HomRpA,Bq, pf ¨ rqpxq :“ fprxq (this is a R´action since
f ¨ r ¨ s “ f ¨ rs).
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Lemma 15.0.12. For any A left R´module, we have HomRpA,R^q » A^ (isomor-
phism of right R´module) where R is considered as a right R´module and R^ “

HomZpR,Q{Zq is a left R´module.

Proof. Let A be a left R´module, for f P HomRpA,R^q, x P A, r P R we have

HomZpR,Q{Zq “ R^
Q fpxqprq “ fpxqp1 ¨ rq “ pr ¨ fpxqqp1q “ fpr ¨ xqp1q

by the definition of action in R^ and f homomorphism. Define

f̃ : A ÝÑ Q{Z P A^,

x ÞÝÑ fpxqp1q.

Above computation shows that ϕ : HomRpA,R^q Ñ A^ such that f ÞÑ f̃ is an
isomorphism of right R´modules. Then

• ϕ homomorphism since p Ąf ¨ rpxqq “ pfrqpxqp1q “ fprxqp1q “ f̃prxq “ pf̃ ¨

rqpxq.

• ϕ injective since f P HomRpA,R^q is determined by fpyqp1q, y P A,

• ϕ surjective since g P A^ is f̃ for f P HomRpA,R^q defined by fpxqprq :“

gpr ¨ xq (since f̃pxq “ fpxqp1q “ gpxq).

Hence the lemma.

Proof of Proposition 15.0.8. We have

• Q{Z is injective Z´module, hence by Lemma 15.0.9 we have HomZp´,Q{Zq

is exact.

• By Lemma 15.0.12, for any A P R ´ Mod, we have HomRpA,R^q »

HompA,Q{Zq in Mod ´ R. Hence HomRp´, R^q and HomZp´,Q{Zq :
R ´ Mod Ñ Mod ´ R are isomorphic functors. Hence HomRp´, R^q is ex-
act. Therefore by Lemma 15.0.9, we have R^ is injective in R ´ Mod.

• Let F be free right R´module, then F »
À

iPI R for some set I . Hence
F^ » HomZp

À

iPI R,Q{Zq »
ś

iPI HomZpR,Q{Zq “
ś

iPI R
^. By Lemma

15.0.10, we have F^ »
ś

R^ is injective.

Hence the proposition.

Proposition 15.0.13. For any M left R´module, there is F free right R´module and an
injective R´module homomorphism M ↣ F^.
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Proposition 15.0.8 and Proposition 15.0.13 together implies Theorem 15.0.6.
That is, “R ´ Mod” has enough injectives.

Lemma 15.0.14. For anyM leftR´module, there is injectiveR´module homomorphism
M Ñ M^^.

Proof. For x P M , let
evx :M

^
ÝÑ Q{Z,

f ÞÝÑ fpxq

evaluation at x. Note that evx P M^^ and

Ev :M ÝÑ M^^,

x ÞÝÑ evx.

Easy to check that Ev is a R´module homomorphism. Indeed, for any r P R, @x P

M, @f P M^, we have

evr¨xpfq “ fprxq “ pf ¨ rqpxq “ evxpf ¨ rq “ pr ¨ evxqpfq

where the last equality is because it is action in M^^. Hence Evprxq “ rEvpxq. It
remains to show that Ev is injective (ùñ check kerpEvq “ 0).

Let x P Mzt0u, need to show that evx ‰ 0. Let G :“ tkx : k P Zu Ď M
additive subgroup of pM,`q generated by x. Then G cyclic implies that G » Z or
G » Z{nZ with n ě 0 (x ‰ 0).

If G » Z, we let
f : G ÝÑ Q{Z,

kx ÞÝÑ
k

z
` Z.

If G » Z{nZ we let
f : G ÝÑ Q{Z,

kx ÞÝÑ
k

n
` Z.

In both cases, f is Z´module homomorphism since Q{Z injective, there exists
f̃ P HomZpM,Q{Zq “ M^ such that

G M

Q
f

rf

commutes. Observe that fpxq ‰ 0 implies f̃pxq ‰ 0. Hence evxpfq ‰ 0 implies that
evx ‰ 0.
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Proof of Proposition 15.0.13. The duality functor HomZp´,Q{Zq is left exact (as any
Hom functor) and additive. Let M P R ´ Mod, in Mod ´ R, there is F free and
β : F ↠M^ surjective homomorphism. Since the duality functor is contravariant
left exact, the image of epimorphism β is a monomorphism β^ : M^^ ↣ F^.

Hence we get M
Ev

↣M^^
β^

↣ F^ in R ´ Mod.
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