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Part 1

Representation Theory



Algebras and Representation

1.1 Basic Definitions

Definition 1.1.1. Let K be a ring, then a K —algebra (A, +, -, x) is a K —module
(A, +, ) together with a bilinear operation multiplication x : A x A — A such that

JleAlxr=xx1=xVreA,

rx(yxz)=(rxy) x -z

Equivalently, (4, +, ) is K—module, (A, +, x) is a ring, and x is bilinear, (k - z) -
y=xzx(k-y)=k-(zxy).

From now on, K is a field, so the K —algebras are K —vector spaces (in partic-
ular, have basis).

Example 1.1.2. (1). Let K = R, A = R[X{4, -+, X,| polynomials in n commuting
variables.

(2). Let K = R, A = R(Xjy, -+, X,) polynomials in n non-commuting vari-
ables.

(3). For V a K—vector space, A = (End(V), +,-,0) is a K—algebra, where
End(V) is linear maps from V to V.

(4). Let B = (Mat, (K), +, -, x) is a K —algebra, where Mat,, is n x n matrices
and is isomorphic to (End(K™), +, -, o) as representation of linear map of matrices.

Definition 1.1.3. Let A, B be K—algebra, f : A — B is an algebra homomor-
phism if respects the operations +, -, x. Equivalently, f is K —linear map and ring
homomorphism.

Note that f is isomorphism if bijective and homomorphism and A ~ B means
“isomorphic”: 3f : A — B isomorphism.

5
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Remark 1.1.4. The ring-quotient construction gives an algebra quotient: if [ is a
(two-sided) ideal of A then A/ = {z+1I,x € A} has structure of algebra (k(z+1) =
kx +1I).

Example 1.1.5. We see R[X]/X™ and R[X]/(X™ — 1) are algebras.

Remark 1.1.6. The fundamental isomorphism theorems for rings hold for alge-
bras. In particular, if f : A — B is algebra homomorphism then Im(f) ~ A/ker(f)
as algebras.

Definition 1.1.7. Let G be a group. The group algebra K [(] is the K —vector space
with basis G’ and multiplication in K [G] obtained by extending multiplication in
G K—linearly.

Example 1.1.8. Let G = S3, K = Cand = = 2Id + 5(1,3),y = Id — (1,2,3) € C[S5].
Then = x y = (2Id + 5(1,3)) x (Id — (1,2,3)) = 2Id — 2(1,2,3) + 5(1,3) — 5(1, 2).

Remark 1.1.9. We see K|[(] is a natural setting to do computations about G.

Example 1.1.10. We take z = >, _;_;,(i,7) € C[S,] sum of all transpositions.
Then z* = Y] o c,m where ¢, = number of ways of getting  as product of
K —transpositions.

Definition 1.1.11. Let A be a K —algebra, a representation of A is (V, p) where V
is a nonzero K —vector space and p is a homomorphism of algebra A — End(V').

This is Ya € A, p(a) € End(V) is a linear map, that is, Va,b € A, p(a + b) =
pla) + p(b), pla x b) = p(a) o p(b), p(1) = 1d and p(ka) = kp(a).

Equivalently, upon denoting a - v for p(a)(v) where a € A, v € V, we must have
this action is bilinear and associative: (a x b) -v =a- (b-v),1-v = v.

Definition 1.1.12. The dimension of (V, p) is dimg (V). Also (V p) is finite dimen-
sional (f.d.) if dimg (V) is finite.

Remark 1.1.13. If dim V' = n, then V' ~ K™ as vector spaces and we can view p(a)
as a matrix.

Example 1.1.14. Let A = R[X], given f € End(K™), we can define a representation
(V,p) by V.= K", p(P) = P(f) where P = Y ¢;a" and P(f) = Y ¢; fo---o f. In

7

matrix term, p(P) = P(M) = >, ¢;M* where M is matrix representing f.

Remark 1.1.15. If {g;} are generators of A, then a representation of A is determined
by {p(g:)}. The linear maps p(g;) must satisfy the same relations as g;.

Example 1.1.16. A representation for R[X]/(X"™ — 1) is determined by p(X) satis-
tying p(X)" = Id.
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Remark 1.1.17. For A = K|[G] a group algebra representations are uniquely de-
termined by a group homomorphism

p: G — GL(V),

where GL(V) are invertible matrices (for all g € G, p(g) € GL(V) since p(g ') =
p(9)~1). The representations (V, p) of K[G] is then determined by linear extension

P22 ceg) = 2 ¢ep(9)-

Example 1.1.18. (1). Let G = C,, = (x)/{{a™ = 1)) cyclic group with n elements.
For M e Mat, (K) such that M" = Id we can define p(z) = M (Here K[C,] ~
R[X]/(X" — 1)).

(2). For instance, for K = C, M = [w],w = €%™™ the m—th root of unity gives
a 1—dimensional representation p(z™) = [w™].

Definition 1.1.19. The regular representation of A is (Vieg, preg) Where Vi, = A as
K —vector space, pyes(a) is left multiplication by a, i.e.,, Va € A, v € Vi, = A, we
have a - v = p(a)(v) = a x v where - is action and x is multiplication in A.

Goal of Representation Theory:
(1). Describe all the A representations (in particular, p,.;) - decomposition into
“irreducible representations”.
(2). Use this description to simplify computation in A.

Remark 1.1.20. For G a group, the representation of the group algebra is specified
by endomorphisms p(g), g € G such that p(1) = Id, and

p(gh) = p(g) o p(h),Vg,h e G. (%)

Observe that Vg € G, p(9)p(g7") = p(1) = Id. Hence Vg € G,p(g) € Aut(V)
which are invertible linear maps V' — V. Note that (x) means that p : G — Aut(V)
is group homomorphism.

In summary, for a group G, the K —representations of the group algebra K[|
are uniquely determined by the group homomorphism p : G — Aut(V'), where V'
is K —vector space.

The representation (V, p) is then extended to K[G] by linearity, i.e., p(3;c,9) =

> ¢ep(g). In terms of operations: (> c,g) - v = Y cy(g - v).

Example 1.1.21. (1). Let A = K[G],V =k, p(g) = ldg for g, the trivial representa-
tion with dimension 1.

(2). Let A = Clen),cn = (9/g™ = 1)) = {¢’ = L.g",---,g""'}. Then
V = C, p(g*) = w*ldx where w™ = 1.

(3). Let A = K[S,,,],V = K™, V7 € Sy, p(7) = “permutation matrices”. 7 - e; =
exiys €5 = (0,---,1,0,---,0) where the only 1 is at the j—th coordinate as ¢; basis
of K™. Then 7 - (l’l, s ,il?m) = (l’ﬂfl(l), s ,ilfwfl(m)).
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(4). Let A = K[G], for any G—set S, we can define K =vector space with
basis S and representation given by p(g) - s = g - s where the latter - is g action.
(Hence p(g)(>.csS) = > cs(g - S), p(g) is a representation in basis S).

Remark 1.1.22. The regular representation K[G] is of this form (action G —~ G by
left translation).

Definition 1.1.23. Let (V, p), (V', o) be representation of K —algebra A, a homo-
morphism of representation is ¢ : V. — V' linear such that

Vae A,Vve V,p(a-v) =a- ¢(v),
where the first - is the action on p and the second - is the action on p'.

For notation, Hom,(V,V’) is the vector space of representation homomor-
phism V' — V' (p, p’ are implicit).

Definition 1.1.24. The isomorphism of representations is bijective homomor-
phism of representations.

We say V' ~ V" if there exists isomorphism V' — V.

Remark 1.1.25. If (V,p) ~ (V' p/), then there exists matrix P such that Va €
A, Pp(a)P™' = p'(a) (Indeed, if P represents the isomorphism V — V’, then
Pp(a) = p'(a)P). Equivalently, the matrices p(a) and p(a’) are equal up to a change
of basis.

Example 1.1.26 (Toy model). Let A = C|c,,], ¢ = {9)/{{g™ = 1)), then
(1). In the basis {¢°, - - - , g™ !} we have

m—j
/O 0 0 1 0
0O 0 O 0 1
preg(gj> 10 0 O 0 0
1 0 0 0 0 01j
: 0 0 0O O
\O 1 0 0O O

Hence preg (37, kig') is the matrix with all 1 entries. Let w = ¢>™/™ and consider
basis hg, - - - , hy,—1 Where h; = Z;”;Ul w’ig7. In this basis, we have
w07 = 1 0

preg(gj> = ;
0 w_(m_l)j
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the diagonal matrix.

(2) The change of basis (¢°, - -+ , g™ ') to (ho, - - , h,—1) simplifies computation.
Actually this is equivalent to discrete Fourier transform (DFT). That is, regard
> kig" as “function with value k;” and h; pointwise waves. Change of basis: write
functions as linear combination of waves.

Convolution of function €75 pointwise multiplication.

Useful for fast multiplication of polynomial or numbers.

1.2 Decomposition of Representation and Schur’s
Lemma

Definition 1.2.1. Let (V, p) be a A—representation, then
* asubrepresentation is a subspace 0 # W of V such thatVa € A,a-W < W.

In this case, (W, p|w ) is a A—representation; and

* the representation (V/ p) is irreducible if it has no proper subrepresentation.

Remark 1.2.2. Forallv e V, A-v = {(a-v,a € A)is a subrepresentation of V. Hence
V is irreducible if and only if Vv € V, Av = V.

Lemma 1.2.3. If A is finite dimensional (e.g., A = K|G] where G is finite), then any
irreducible representation of A is also finite dimensional.

Proof. We have V irreducible — Av = V where dim Av < dim A < . O]

We say “irreps” to mean finite dimensional irreducible representations.
Remark 1.2.4. If ¢ € Hom4(V, W), then Im(¢), ker(¢) are subrepresentations.
Lemma 1.2.5 (1st Isomorphism Theorem). We have that

* if V is A—representation, and W < V subrepresentation, then VW = {v+W, v e
V'} has structure of A—representation: a -v = a - v wherev = v + W; and

e if € Homa(V, W) then Im(¢) = V /ker(¢).
Definition 1.2.6. Let Vi, --- |V, be A—representations, the direct sum is the rep-
resentation V; @ - -- @ Vi, with A—action a - (vy,--- ,v,) = (a- vy, -+ ,a-vg). The

direct sum can be viewed as vector spaces {(vy, - - , v;)} where v; € V;. In terms of
matrices we have

pi(a) 0
p(a) = . )
0 pn(a)

where each p;(a) is a block instead of just an entry.
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For notation, we use mV to denote V@ --- @ V for m times.

Lemma 1.2.7. If W, W' < V subrepresentations such that W + W' = V.W n W' = {0},
then V.~ W @ W' as A—representations.

Proof. It suffices to consider the homomorphism:
o WeW —V,
(w,w") — w + w'.
Then the statement follows. O

Example 1.2.8. (1). Let A = K[S,,]| and (V, p) representation defined by 7 - p; =

px(iy, then W = {(z,--- ,2),v € K }, which is isomorphic to the trivial represen-
tation, is subrepresentation. Also consider W' = {(zy,---,z,),>,2; = 0} is a
subrepresentation.

(2). Let A = C[S3], 7 - pi = px(p)- Inbasis {(1,1,1),(1,-1,0),(1,0,—1)} where
the first term is from W and the latter two are from W', we get

1 1 0 0
0 3y =10 1 o0,
0
and we have p(a) = *
*

* o O

S O

Lemma 1.2.9 (Matschke). Let G be a finite group, suppose char(k) does not divide |G|.
Then any finite representation of G is isomorphic to a sum of irreps.

Proof. 1t suffices to show that VIV < V subrepresentations W, there exists W < V
subrepresentations such that V' ~ W @ W. That is, it suffices to show W + W =V
and W n W = {0}. We start with W’ < V subspace such that W + W’ = V and
W n W' ={0}.

Let ¢ : V — V linear such that ¢| = Idy and ¢|y = 0. We have W’ = ker ¢
but ¢ ¢ Endgg(V) and W’ not subrepresentation a priori.

Let ¢ = deG p(g~1) o gop(g) (e, ¥(v) =3 q9 'o(gv)). Thus we have
* ¢ € Endgg) (V) because Vh € G, Vv € V, we have

=Y g o(ghv) = b Y hTg T o(gh) = 1 Y. g7 é(gu) = hap(v).

geG geG geG

Hence W = ker 1) is a subspace. We have
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 Imy) = W because first Imy) < 3} g~ 'Im¢ = 3, g~ 'w S 3w = W. Second,
we have Yw € W, (w) = X g '¢(gw) = 3 97 'gw = |G|w # 0in k (this is
why we need the condition for char(k)). Thus w = zp(%) and w € Imy. We
have

® Imy N kery = {0} because Vv € Imi) N ker) we have v = (%) = 0. We
have

9

* Imy +kery) = V' because v = ¢ (&) + (v — ¥ (i7))-

Hence the lemma. O

Lemma 1.2.10 (Schur’s Lemma). Let K be algebraically closed, let A be a K—algebra,
let V, W be irreducible representations of A, then

1 ifvV =W,

dim(Hom 4(V, W)) = :
i (Homa )) {0 otherwise

Proof. Let ¢ € Homu(V,W),¢ # 0 and ker(¢) is subspace of V irreducible, then
ker ¢ = 0. Similarly, Im¢ is subspaces of IV irreducible, thus Im¢ = W. Hence ¢ is
isomorphism. Thus if V' # W then Hom,4(V, W) = {0}.

Suppose now V' =~ W. Then up to composing by an isomorphism, we can
assume W = V. We want to show dim(End4(V)) = 1. We claim End,(V) =
{Aldy, A € k}. Now for one direction 2, it is obvious. For the other direction <,
let ¢ € Ends(V),VA € k, we have ¢ — Ald € Enda(V) = Auta(V) u {0}. Since k
is algebraically closed, 3\ € k eigenvalue of ¢ (root of characteristic polynomial),
then ker(¢ — AId) # 0. Therefore ¢ — AId is not isomorphism thus ¢ — AId = 0. [

Corollary 1.2.11. Let K be algebraically closed, let V1, - - -, V}, be non-isomorphic irreps
of A, then

k k k
i=1

i=1 j=1

In particular, if U ~ @ m;V;, then m; = dim(Homa(V;,U)). So the multiplicities of
irreps in a representation are uniquely defined.

Before proving this corollary, we first claim and prove some lemma.
Lemma 1.2.12. Let V., V4, - -, V}, be A—representations, then
(1). Homu(V, @, Vi) ~ @, Homa(V, V;) as vector spaces; and
(2). Homa (P, Vi, V) ~ @, Homyu(V;, V') as vector spaces.
Hence, Hom (D, Vi, ® W;) ~ @, ; Homa(V;, Wj).
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Proof of Lemma 1.2.12. (1). Consider isomorphism given by

@ Homu(V, V;) — Homu (V, P V;),

(01, o) — (@20 = (¢1(v), -+, Pk (V).

(2). Consider isomorphism given by

@ Homu(V;, V) — Homa (P Vi, V),

(¢17"'7¢k)'—’(¢3 V1, - y U 2¢z Uz

Hence the lemma.
Then we can prove the corollary.

Proof of Corollary 1.2.11. We have

dim(HomA(@ n; Vi, E{—) m;V;)) = dim(@ n;m;Homy (V;, V;))
i J

1]

i%j

- Ynonss; = oo

where §;; is Kronecker delta by Schur s Lemma.



Representations of Finite Groups

2.1 Fundamental Isomorphisms

Assumptions: Let G be a finite group, K be algebraically closed, char(K) t |G|
(so Matschke’s and Schur’s Lemmas hold). “Irreps of G” is the irreps of K|[G].

Theorem 2.1.1. Group G has finitely many (non-isomorphic) irreducible representations
Vi, , V,. Moreover Viey ~ @);_, dim(V;)V; as G—representations.

Example 2.1.2. Let K = C, G = S3. We know 3 irreps already. They are
Vi = trivial representation. (p; () = Idc),
V, = sign representation. (pa(7) = sgn(7)Idc),
V5 of dimension 2 determined by

)= (3 7). = (45

There are no other irreps and
ClSs]=VieV,@2V;

as Ss—representations.
Equivalently, there exists basis of C[.S3] in which

13
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and

-1 -1

Proof of Theorem 2.1.1. By Matschke’s Lemma, we have V.., ~ @, m;V; for some
m; = 0,V irreps. By Schur’s Lemma, we have m; = dim(Homg (Vieg, Vi))-
For (V, p), G—representations, let Hy = Homg (Veg, V). We claim that

Hy = {e,,v e V},wheree, : Vi, = K[G] —V,

r——> T 0.
For one direction (2) : we have for all v € V] that ¢, € Hy since Ya € K[G], we
havee,(a-z)=(a-z) - v=(axx) - v=a-(x -v)=a-ex).
For the other direction (<) : for all ¢ € Hy, we have ¢ = €4(1,,), indeed, Yz € Vg,

we have ¢(z) = ¢(z - 1¢) = 2 - ¢(1lg) = €4014)(2).
Conclusion:
e:V—H,,

V= €y,

is a surjective linear map. Also, ¢ is injective since v € ker(e) implies €,(15) = 0,
which means 15 -v =0sov = 0.

Hence e is bijective linear map. Hence dim(Hy ) = dim(V'). This concludes the
proof. O

Theorem 2.1.3 (Fundamental Isomorphism for Group Algebra). Let Vi, .-, Vg be
the non-isomorphic irreps of V. Then

I': K[G] — éEnd(V}),

T (pl(x)v"' 7pR($))7

is an isomorphism of algebras.
Example 2.1.4. (1). Let G = S5, K = C, R = 3, we have

-1 -1

pt(1.2) = @ 1 (1 S e = a-n (2 9),
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and C[Ss] isomorphic to algebra of matrix in Mat,(C) of form

(2). Let G = C,,, K = C,T"is given by DFT, we have

w =Dk =1 0

pres(9") =
0 w—(m—l)k
We have C[$,,] "<25" algebra of diagonal matrices.
Proof of Theorem 2.1.3. By definition of G—representations, for all 7, p; is a homo-
morphism of algebra, hence I' is a homomorphism of algebra.
We have dim(K[G]) = |G|. We see dim(@P End(V;)) = > dim(End(V;)) =
> dim(V;)?. Moreover, by Theorem 1.3.1., we have

dim(K[G]) = dim(@ dim(V;) Z dim(V;) dim(V;).

We have I' is injective since x € ker(I"), which implies Vi, p;(z) = 0. This means
that p,es(2) = 0 and hence z = = - 1 = preg(z)(1) = 0. O

Corollary 2.1.5. We have number of non-isomorphic irreps of G = number of conjugacy
classes.

Example 2.1.6. For S,,, we have number of irreps = number of “cyclic types” =
number of partitions of n.

Proof of Corollary 2.1.5. Theorem 2.1.3 implies Z(K[G]) ~ Z(@F, End(V})), we
take dimension on both sides, then Z(@ End(V;)) = P Z (End(V)). Moreover,
Z(End( 1)) = {Aldy;, A € k} has dim = 1. This implies that dim(@,", End(V;)) =
3 dim(End(V})) = R.

Also z € Z(K|[G]) if and only if Vh € G, hah™" = . Hence x = 3, Cyg € Z if
and only if Vg, ¢’ conjugate, we have Cy, = Cy (i.e., coefficients are constant over
conjugate class).

Together we see that basis of Z is Cy, - - -, C, where C; = > e 9r where G, are
conjugacy class of G. Hence dim(Z) = number of conjugacy classes and hence
>, dim(End(V;)) = R = number of irreps. O

Consider = = Y, _.(i,j) € Z(C[S,]). What is 2*? Let Vi,--- , Vi be irreps of
G, and let P, = T71(0,--- ,Idy,,---,0). Since (0,---,Idy,, - ,0) form a basis of
Z(@End(V;)), we have {Py,---, Pr} is a basis of Z(K[G]). Then we have the
following definition:



2.2. CHARACTERS 16

Definition 2.1.7. This basis satisfies P,P; = §,;F; where the §;; is the Kronecker
delta. These are the idempotents of the group algebra.

They make computation in Z(K|[G]) easy. For instance, if z = ) ¢; P, then
b = > cfPl-. In the C,, example, P; are the pointwise waves and multiplication in
C[C,] is “simplified” by DFT.

2.2 Characters

Definition 2.2.1. Let A be a K'—algebra, let (V, p) be A—representations, the char-
acter of (V,p) is
Xv - A—> ka

a — Tr(p(a)),

where Tr is the trace of the matrices.

This is well-defined, that is, does not depend on basis used to write p(a) be-
cause the trace of Tr(P~'MP) = Tr(PP~'M) = Tr(M).

Example 2.2.2. If (V,p) is the G—representations associated to a G—set S, then
Vg € G, we have x(g) = number of elements of S fixed by g.

Remark 2.2.3. We have
* xy(la) =Tr(Idy) = dim(V).
* We have yy € A* = Hom(A, K) the dual space.

* If V ~ W, then xy = xw because V, W are equal up to change of basis and
Tr(PMP™1') = Te(M).

Notation: Let G be a finite group, then we say
F(G) = K[G) ("5 {f: G~ K}),
Also we define
CH(GQ) ={¢pe F(Q)|o(g) = ¢(¢'),Vg, ¢ conjugate in G}

(bgﬂ) “{f : G — K such that f is constant on conjugacy class}).

Vector space of class functions on G.

Remark 2.2.4. We have 7 (G) = K|[G]* ~ K[G] as vector spaces and CH(G) ~
Z(K[G])* ~ Z(K[G]) as vector spaces.
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In fact, we have that xy € CF(G).

Theorem 2.2.5. Let G be finite group, let Vi,--- , Vg be the irreps, the characters
X1, Xr Of the irreps form a basis of CF (G).

Example 2.2.6. Let G = S35, K = C, denote V; trivial representation, V; sign repre-
sentation, V5 defining trivial, then we have the table

Character
X1 X2 X3
¢, = {1d} 1 1 2
Cy ={(1,2),(2,3),(1,3)} 1 -1 0
Cs =1{(1,2,3),(3,2,1)} 1 1 -1

and we have x3 = number of fixed points —1. Theorem 1.4.5 says x1, x2, x3 form
a basis of CF(S3) = C3 (i.e., columns are basis of C?).

Proof of Theorem 2.2.5. First we have dim(CF(G)) = number of conjugacy classes
= number of irreps = R. This means that it suffices to show x;, - -, xg are inde-
pendent. Now we show this claim.

Indeed, consider P, = (0, -- ,Idy;, - - -, 0) idempotents. We have

X;(P) = Tr(p;(R)) = Tr(d;1dv;) = di; dim(V;).

In particular, we have Z?:o kjx; = 0thus Vj, > k;x;(P;) = 0. Hence for any i, we

have k; = 0. ]
Remark 2.2.7. Recall that { Py, - - - , Pg} forms a basis of Z(K|[G]). Proof shows that
T ﬁ&%)} is the dual basis { P} - - - Pi} of Z(K|[G])* ~ CH(G).

2.3 Frobenius Formula and Orthogonality

Notation:

* LetCy,---,Cgbe the conjugacy classes of G, let x4, - - - , xr be the characters
of irreps of G, let x;(C;) = x;(g) for any g € C,.

* For Dy, --- , Dy be conjugacy classes (D, € {Cy, - - - , Cr}), we denote

F(gla“' 7@kj) = Cardil’lallty Of{(91’ 7gk)‘gz 6@%917”' , Ok = 1G}

Then we have the theorem:
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Theorem 2.3.1 (Frobenius Formula). For any k > 1 and for any D, - - - , Dy, we have

D | D i Z@
F(Dy,- -, Dy) = [Dal |’“|ZX dlm X 0

Proof. Let D; = >} .. g € Z(K[G]), note that F(Dy,--- ,D,) = coefficients of 1¢
in D; --- D;. Then observe that

( ) o |G| lfg € 10,
Aregld 0  otherwise (because gh # h,Vhe G)

Thus X,eg() = |G| multiplies the coefficient of 1 in x. Hence F(Dy,--- ,D,) =
%C;'Xreg(Dl -+ Dy). Moreover, Vo, ~ @ dim(V;)V; thus x,ee = D.(V;)x:. Therefore,
we have

F(Cbla"' 7£Dn>:

By fundamental isomorphism I' : K[G| — End(V;), we have D, € Z(K[G]) which
implies that for any ¢, p;(D;) = k;;Idy, for some k;; € k. Moreover, xi(Dj) =
k;; dim(V;) thus we see

~oxi(Dy) 1 Dslxa(Dy)

77 dim(V)  dim(V)

Dxi(D;)Idy;

= Vi, Dy D) = pi(Da) - pil D) = | [(= 4 Fas=)

T 1D50x(D))
o 1

dim(V;)k—
1 & Hil |@]|XZ(@J)
— o0 s SIS

From now on we take K = C.

Definition 2.3.2. We define an inner product {,) on #(G) = K[G]* by such that
for all ¢, v € F(G), we have

@ =1 = S 6009

geG

where - is complex conjugate.
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Theorem 2.3.3 (Orthogonal Relations). Let x1, - - - , xr be the characters of irreps. We
have

(1). Foralli,j,{x:,Xx;) = 6i;. In other words, x1,-- -, xr forms an orthogonal basis of
CF(G).

(2). For all i, j, we have

R
D Xk(C)xk(C) = bijimr
k=1 il

where Cy, - - -, Cg are the conjugacy classes.

Lemma 2.3.4. Let x be a character of G, then we have

X(g7") =x(9),¥g e G.
Proof. Exercise. O

Proof of Theorem 2.3.3. For (2), we have

; C C;) = ; C cl) = ‘G‘ F C;, Gt
k=1 k=1
G Gl 5
= 035|Cs| = 0;
Cl1es] ™ [
For (1), let M = (%), then we have
(2)— M-MT =1d — M* .M =1d
|G‘ Z |Crlxi(Cr)x; (Cr) = Zéxz Oij-
ge
Hence the corollary. O

Corollary 2.3.5. Let V, V' be finite dimensional G—representations and let x, X' be their
characters. Then we have
VaVeyxy=x.

Proof. (=): If V ~ V", then there exists an invertible matrix P such that
Vre K[G], o (z) = P 'p(z)P.
Hence

Va € K[G], X/(2) = Te(p/(2) = Te(P~ p(x) P) = Tr(p(x)) = ().
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<): Suppose x = x’, we can decompose V, V' into irreps:
PP p p
V~@mV;and V' ~ @ miV;.
1=1 i=1

This gives x = >, mix; = x = X' = 2,._, m;Xx;. Hence by Theorem 2.2.5, we
have m; = m; for all i. Thus V' ~ V". O

Corollary 2.3.6. Suppose K = C. Let V, V' be G—representations and let x, x' be their
characters. Let x1,- - - , x» be the characters of the irreps Vi, -- .V, of G. Then

(a). The multiplicity my, of Vi, in V is {x, X)-

(b). We have {x,x') = >._; mum}, = dim(Home (V, V")) where we have my,, m), mul-
tiplicities of Vi, in V, V.

Proof. The characters x1, x, are orthonormal for the inner product, so
p

(@). Wehave V.~ @, m;V; = x = 2 mixi = O Xk = Q0 MiXis Xk) =
mi.

(b). We have (x,x") = (2 mixi, 23, mix) = Dy mumy, = dim(Homg (V, V7))
where the last equality is by the corollary of Schur’s Lemma.

Hence the corollary. O

Exercise: Let G = S,, and let V' be the representation given by V' = C™ and
T - e; = e for all ¢ in [n]. Multiplicity of trivial representation in V' =7

We see (Xv, Xtrivial) = = Qires, fiX(m) = average number of fixed points = 1
where fix() is the number of fixed points of =.

Note that V is the sum of 2 irreps <= (xv, xv) = 5 2. o, fix(m)? = 2.

2.4 Restricted and Induced Representations

Definition 2.4.1. Let H be a subgroup of G. Any representation (V, p) of G gives
a representation of H by taking the restriction p|y : H — End(V'). We denote by
Ve p this restricted representation of H.

Remark 2.4.2. For an irreducible repres of G, the restriction may not be irre-
ducible.

Example 2.4.3. Irreps of symmetric group (not proved in this class).
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Recall conjugacy classes of S,, <= cyclic types «< “partitions of n” = ways
of writing n as a sum of positive integers n = n; + - -- + n;, (with n; arranged in
weakly decreasing order) <= “Young diagram”,

?

Y ED/D \
EED/ N\ /H\
/\ﬂ\%g

Hence the number of irreps of S, = number of partitions of n = Young dia-
grams with n boxes.

Fact: one can index the irreps of S,, by the Young diagram in such a way that
the set of irreps of S, is Vy, A Young diagram of size n and

(W) Sn—Sny = P V.

pnc X obtained by deleting one corner box

Corollary 2.4.4. We have dim(V)) = number of paths from & to X in the Young lattice.

Question: For H < G, how can we get a repres of GG from a repres of H?
Reminder: We have G acts on G/H by left-translation: If G/H =
{a1H,--- ,a;,H}, this action is

a: G — Perm(G/H),

a(g) : a;H —> ga; H.

This action gives a representation (W, 7) where the matrices 7(g) = (%) jer) are
permutation matrices: ¢; ; = 1if ga;H = a;H and 0 otherwise.

Definition 2.4.5. Let H be a subgroup of G. Let a4,--- ,a; in G be representa-
tives of left-cosets: G/H = {a1H, - ,aH}. Let (V,p) be a H—representation.
The induced representation (Vy_.¢,pn_c) (for our choice ai,--- ,a;) is the
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G —representation with matrices

Ml,l(g) Ml,k(g)
Vg€ G, pr-clg) = :
Mkq(9) My x(9)

where M, ;(g) = pla; " ga;) if gajH‘: a;H( equivalently a; 'ga; € H),
0 otherwise.
Lemma 2.4.6. We have the following:

(1). The tuple (Vi—.c, pu—c) is indeed a representation: this means that for all g, ¢', we
have pr—c(99") = pa—c(9) © pa—c(g).

(2). Changing the representatives a; gives an isomorphic representation.

(3). The character x y—.c of Vi is related to the character x of V as follows:

Vg Goiaale) = — 3 x(f ).

|| feGlf~tgfeH

Proof. We prove (1), (3), and (2) respectively.
(1). Multiplying by blocks we get

k
B
pr-c(9)pr-c(y’) = ! Z 9)Ma;(d),

with B; ; = 0 unless there exists d in [k] such that ¢'a;H = a4H and ga,H =
a;H (and this occurs if and only if g¢'a;H = a;H). In this case, we have

Bij = M;4(9)Ma;(g') = pla; gaq)plag'g'a;) = pla; gg'a;) = M;;(g9').
Hence py—c(9) © pu—c(d) = pu—c(99).

(3). We have
_ 1 L .
XHa-c(9) = Z x(a; 'ga;) = Z m Z x(h™'a; ' ga;j)
ila; 'ga;eH ilaytga;eH heH
1 —1
= 1H D x(Fgh),
feG|f~lgfeH

where f = a;h and the last equality is from if « = bH, then a 'ga € H if and
only if b='gb € H.
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(2). By (3), character does not depend on a4, - ,a;. Since a different choice of
ai,--- ,a gives the same character, the corresponding repres are isomorphic (by
a previous corollary). O

Corollary 2.4.7 (Frobenius Reciprocity). Suppose K = C, let H be a subgroup of G,
let V' be a representation of H with character x and let V' be a representation of G with
character x'. Then we have

Xu—a, X' =X Xoop (inner product of C[G]* and C[H]*).
Proof. We have
/ 1 — N
XH-6:X') = Z XH-c(9 = G >, xUTahHx(9)

geG | H ‘g,feGlf‘lgfeH

1
= XU g )X (Flgf),
GIIH] g,feG|fZ—:1gfeH

hence

X=X = \GH Z D x(mx(h) yGHH\Z|G|X

heHg feG|f~1gf=h heH

= 6 XGom)-
Hence the proof. O

Remark 2.4.8. For V, V' irreps of H and G respectively, this means that (via a
previous corollary) multiplicity of V' in Viy_,¢ = multiplicity of V in V};_,.

Example 2.4.9. Consider S,_; < S,,. For any Young diagram \ we have

(W)s,1—os, = P V.

1D obtained by adding one box



Finite Dimensional Algebras

3.1 Fundamental Isomorphism

Throughout this subsection, we assume k£ algebraically closed, A is finite di-
mensional K —algebra (we do not have the Matschke Lemma).

Theorem 3.1.1 (Density Theorem). Let (Vi, p1), - -, (Vg, pr) be non-isomorphic irreps
of A, thatis, forve V;,A-v =1V,. Let

R
I':A— @End(V)),
=1

z— (p1(x), -, pr(T)).

Then T is a surjective algebra homomorphism.
Lemma 3.1.2. Any subrepresentations of a sum of irreps is isomorphic to a sum of irreps.

Proof. (1). Claim: Let ¢ : V' — W be representation homomorphism such that
there exists ¢ : W — V representation homomorphism and ¢ o ¢ = Idy.
Then V' ~ ker ¢ @ Im¢. Proof of claim as exercise.

(2). Let W be subrepresentations of V' = @ m;V;, and V; are irreps, we show
W ~ sum of V; by induction on }m;.

Base case > m; = 0 trivial.

Induction step: Let W 2, @ m,;V; inclusion map, let U be irreducible sub-
representation of 1, then ¢ decomposes: there exists ¢5; : W — Vi, k €
[R], j € [my] representation homomorphism such that

¢(x) = (01,5(%) ) kelr) jelms)-

24
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We have ¢, ;|lv : U — Vj is 0 as isomorphism since U, V} irreducible.
Also there exists &, j such that ¢, ;| is isomorphism. Thus U ~ Vj and
there exists ¢ := (¢ ;|v)~" such that ¢y ; o ¢p = Idy,. By previous choice
W~ Im(¢y,;) @ ker(¢x ;) where the first component is V;, and the second
component is isomorphic to @ m.V; where m) = my, — 1,m; = m;,Vi # k.
By the induction hypothesis, ker(¢y ;) ~ sum of irreps and hence W ~ sum
of irreps.

Hence the lemma. N

Proof of Theorem 3.1.1. Let nj, = dim(Vj), let (ex1,-- - , exn, ), let
1/] : A - C_D mkv}m

T (T - €rj) kel R],jelni]-

Note that x - e;; = pr(z)(ex;) = “j—th column of pi(x)”. Therefore I' surjective
<= 1) surjective. Now we want to show v is surjective.

Since Imy < @ ny Vi, Imyp ~ P n,V;, by lemma. To prove surjectivity, it suf-
tices to show my, = ny, for all £ (by dimension argument). Consider the map

¢ P miVi ~ Im(v) — P ny Vi,

where ¢ from the first term on the left to the last term with ¢ being representation
homomorphism. Decomposition of homomorphism ¢ : there is ¢y, ; : Vi — Vi
with

¢<(V)l,z’>le[R ],5€[my] Z ¢l 1,k ] l K )ke[R] JE[me]-

0 if 1 £ k,
1AV, if =k, e k.

71]

Note that (ex;)ke(r)jefn,] = ¥(1a) € Im(¢p). Therefore we have for all £ €
[R]7 Elvk,lu Ty Vk,mk € Vk SUCh that

By Schur Lemma, ¢;;x,; =

Vien €k 1
Vi, €k.,2
()] ")
1) . .
Vk7mk €k7mk
Hence Vi1, -+, Vim, generates the basis ey 1, - - - , ey, . Therefore my, > ny, Vk. O

Definition 3.1.3. Let rad(A) = {x € A[|V(V,p) irreps p(x) = 0} be the Jacobson
radical of A.
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Theorem 3.1.4 (Fundamental Isomorphism). Let A be finite dimensional algebra over
algebraically closed field k. There are finitely many (non-isomorphic) irreps of A. They
are (Vi,p1), -+, (Vg, pr) and

I': A/rad(A) — P End(V;),
x +rad(A) — (p1(z), -, pr(2)),
is isomorphism of algebra.
Proof. We have

* By density theorem, if Vj,--- ,V; non-isomorphism irreps of A, then A —
@ End(V;) is surjective. Hence dim(A) > > dim(@ End(V;)) > k. Hence at
most dim(A) irreps.

* By density theorem, the map
A A— DEnd(V),
v (pa(a), - pr(a))
is surjective. Hence by basis isomorphism, A/ ker(A) ~ @ End(V;).
e WehavekerI' = {a € A|pi1(a) =0, -, pr(a)} =rad(A).
Hence the theorem. O]
Theorem 3.1.5. Let A be finite dimensional algebra, then

rad(A) ¥ {z e AFn > 0, (z)" = {0} 2 N M,

M maximized left-ideal of A

where (x) is two-sided ideal generated by x. Then I x J = {Zf;l xy,x; € Iy, € J}
product of ideal which implies I = {3F | @y, Zim|ip € I},

Lemma 3.1.6. For any finite dimensional representations A, there is filtration 0 = Vj <
Vi € -+ €V, =V subrepresentations such that V;/V;_, is irreducible.

Proof. Induction on dim(V).
Let Vi be an irreducible subrepresentation, by induction hypothesis V' /V; has
a filtration, then

UcU c---cU,=V/Vy---V;/V;_; irreducible.
By basic isomorphism,

. bijection . ..
subrepresentation of V' /V; LI (subrepresentations of V containin i},
p p &
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W /Wy «— W.
Hence there exists W, € W, < --- € W} < V such that U; = % and W;/W,_; ~

Vi

(Wi/Vh)/(Wi_1/Vi) = U;/U;_y irreducible. Thus0 < Wy =V, < Wy < --- < W, =
V is a filtration for V. O

Proof of Theorem 3.1.5. For part (1):

Suppose z ¢ rad(A), then there is (V, p) irreps such that p(z) # 0. Since (z) -V is
a nondegenrate subrepresentations, we get () - V' = V. Hence for all m, (z)"V =
V implies that for all m, (z)™ # 0.

Let0 = Vp € V4 < --- < V,, = Vi, subrepresentation such that V;/V,_; ir-
reducible. For all z € rad(A), for all i, we have zV;/V;_; = 0 hence zV; < V,_;.
Therefore for all z € (rad(A))™,zV,, < Vo = 0. Hence (rad(4))™ = 0 and
Vo e rad(A), (z)™ < (rad(A))™ = 0 therefore x - 14, = 0 thus z = 0.

For part (2):

Remark: We have I is left ideal of A if and only if I is subrepresentation of
Viee = A. Also M is maximal left ideal of A if and only if V;.,/M are irreducible
representations.

(c:) Let z € rad(A). By (1), there is m, ()™ = 0 hence for all a € A, (ax)™ = 0.
Therefore Ya € A,1 — az is invertible become (1 — az)(1 + ax + (ax)* + -+ +
(ax)™ ') =1— (ax)™ = 1. Hence = € N M. Indeed if z ¢ M on maximal

M max left ideal
left ideal, then Ax + M = A where Ax is left ideal. Hence 3m € M, a € A such that

ax + m = 14. Therefore m = 1 — ax invertible by above and contradicts M # A.
(2:) Homework: z € (\M =z € () Ann,,(v) = rad(A). O

3.2 Semisimplicity

Definition 3.2.1. An A—representation is semisimple if it is isomorphic to a sum
of irreducible.

Example 3.2.2. If A = K[(] is a group algebra over k of char(k) 1 |G|. Then any
A—representation is semisimple by Matschke lemma.

Theorem 3.2.3. Let k be algebraically closed field, and let A be a finite dimensional
K —algebra, the following are equivalent:

(1). Any finite dimensional A—representation is semisimple (= decomposible into ir-
reps);

(2). The regular representation is semisimple;

(3). The radical rad(A) = 0;
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(4). There is finite dimensional vector spaces Vi, - - - , Vi such that A ~ P | End(V})
as algebra.

We call A semisimple in this case. In this case, Vi, - - -, Vi can be given the structure of
A—representations as follows: if

L:A— @PEnd(Vj),

ar— (pl(a)a T 7pR(a))7
is isomorphism of algebra, then (V;, p;) is A—representation for all i. Moreover

(a). The spaces Vi, - - - , Vg be all the irreps of A up to isomorphism.
(b). The regular V,eg ~ @z}i L dim(V;)V; as A—representations.

Proof. (1) = (2) is trivial.

(2) = (3): suppose Vies ~ P m;V; are irreps, there is 1, € V,., implies that
there is v = (v;)ic[n] jem,] € @ m;V; such that for all a € A\{0},a - v # 0 since
a-14 # 0. Leta € A\{0} and leta-v = (a-Vj;), thereisi,j,a-V;; # 0 =
pi(a)(Vij) # 0 — pifa) # a — a ¢ rad(A).

(3) = (4): Proved as corollary of the density theorem.

It remains to show (4) = (1), (a), (b).

(4) = (b): Sketch: The representation V., ~ @ End(V;) ~ @ dim(V;)Vi. We
give End(V;) the structure of A—representations as follows. For any a € A, for
all f € End(V;), we have a - f = p;(a) o f. The map I' is a homomorphism of A
representation since

a-U(z) =a(pi(z), -, pr(x)) = (ap1(z), -, apr(x))
= (p1(a) o p1(x), -+, prla) o pr(x)).
Therefore

Pa-z) = (pi(ax),-- -, prlaz)) = (pr(a) 0 pi(@), - -, pr(a) © pr(z)).

Hence Ve, = @ End(V;). Hence End(V}) ~ dim(V;)V;. Indeed, if {e1, -+ ,eq} is a
basis of V;, then an isomorphism is given by

p: End(V}) — dim(V;)V;,

fr—=(f(ex),---, flea)).

(check this!) Lastly V; is irreducible since for all v € V;\{0} we have A-v = End(V})-
V=V,
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(4) = (1) + (a): It actually suffices to show that any finite dimensional
A—representation is isomorphic to subrepresentation of mV;., for some m (since
subrepresentations of sum of irreps is isomorphic to sum of irreps).

We give the dual vector space A* the structure of A—representations: for all
a € A, forall f e A*, we have

a-fz{A—)K

r — f(za)

[Check A* is an A—representation].

We have the following claim:

Claim 1: Any A—representations (V, p) of dimd is isomorphic to a subrepre-
sentation of a A*.

Claim 2: We have (4) — A ~ A* as representations where the left hand side
1S Vieg.

Proof of Claim 1: For f € V* and v € V we define

frrA—k,
r— f(x-v).
Clearly f € A*, moreover f* = af’ (f*(z) = f(xzav) = (af’)(x)). Hence
V— A%,
v— [
is a homomorphism of A representations. Let fi,- - -, f; be a basis of V*, by above
¢-v— dA*,

v (ff? 7f:1}>7
is A—representations homomorphism. Moreover ¢ is injective since ¢(v) = 0 =
Vi, f{(1a) = 0= Vi, f;(v) =0 = v = 0. Hence V ~ Im(¢) < dA*.
Proof of Claim 2: Let A = @ End(V}), let

¢:A— A*,

( Jma— (78 )
st = Qq — .
- - (fi,+ 5 fr) '_)ZilTR<fiopi)
This is isomorphism of A—representations. Thus we see homomorphism (check),
dim(A) = dim(A*) checked, how about injectivity?
We see ¢ is injective because ¢(p1, - - -, pr) = 0 implies that all the coefficients
in the matrices of p1,-- - , pg are 0. Hence p1,--- , pg = 0. [
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Theorem 3.2.4 (Wedderburn’s Theorem). We have
* Radical rad(A) = 0 implies that A ~ @ Maty, (k) if k is algebraically closed.

e Radical rad(A) = 0 implies that A ~ @ Maty, (D;) division algebra over k in
general.



Part 11

Commutative Algebra
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We are studying the correspondence
Geometry «— Algebra,

pla) =0«— peClxy, - ,z,],aeC",
a belong to locus of 0 of p < p belong to the ideal ker(pyc).

Throughout we assume all rings are commutative unless otherwise stated.



Preliminaries on Ideals

4.1 Basic Operations

Definition 4.1.1. Let R be a commutative ring, I < R is ideal if it is closed under
+,—and RI < I.

Remark 4.1.2. If I, J are ideals, then I n J is an ideal.
Definition 4.1.3. For S < R, wesay (S) = (] [ istheideal generated by S.

ST ideal
Remark 4.1.4. Ideal / # R if and only if / does not contain a unit (invertible
element).

Definition 4.1.5. Let /, J ideals, then we define the sum of ideals /+J = {z+y|z €
LyeJt=(uJ).

We define the product of ideals I.J = ({zy|lz € I,y € J}) = {3, ziyilm =
0,z;€l,y; €I}

We define the ideal quotient (/ : J) = {r e R|rJ < I}.

Definition 4.1.6. We say ideal [ is prime if R\! is closed under multiplication
Vo, an ¢l = a1 x, ¢ ).

Remark 4.1.7. Let x ¢ I prime ideal, for all m we have 2™ ¢ I.

Definition 4.1.8. Let I < R be ideal, the radical of I is r(I) = {z € R|Im > 0,2™ €
I'}. The nilradical of Ris 7(0) = {z € R|Fm > 0,2™ = 0}.

Example 4.1.9. Take R = Z, I = (m), thenwe have r(I) = (p; - - - px) where p; - - - pg
be distinct primes of m = (\_, (ps)-

Proposition 4.1.10. For all I < R ideal, we have r(I) = (),cp prime P (i particular,
r(I) is an ideal).

33
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Proof. (<) : Consider = € r(I) we have 3m > 0,2™ € [ — VI < P prime, 2™ €
P=VIc Pprime,x € P = 2 €()cp prime -

(2):Letz ¢ r(l),letQ={J < RI< JJn{z,2*z% -} =} Note I €
hence 2 # ¢§. Let P be a maximal element of () for inclusion (such a maximal
element exists by Zorn’s Lemma). We claim that P is prime.

Leta,b¢ P= P+ (a), P+ (b) ¢ Q = Im,n > Osuch that 2™ € P + (a), 2" €
P+ (b) = 2" e (P+ (a)(P+(b) =P+ (ab) = P + (ab) ¢ Q = ab ¢ P.
Therefore z € P = 2 € (1< prime @ O

Lemma 4.1.11. We have
e [ r(l),
o r(r(D)) = (),
e r(I) = R<—= 1 =R,
e r(IJ)=r(InJ)=r(I)nr(J]),

Iprime = r(I) =1 = Ym > 0,r(I") = I.
Proof. Easy check. O

4.2 Extension and Contraction of Ideals

Definition 4.2.1. Let f : R — T be a ring homomorphism, then we define

 For [ ideal of R, the f—extension of I is /¢ = (f(I)) the ideal generated by
f(z),xel.

e For J ideal of T, the f—contraction of Jis J¢ = f~1(J) = {x € I|f(x) € J}.

Remark 4.2.2. We have J°is an ideal since f(z), f(y) € J = f(z +y) € J, f(rz) €
J. This gives
{ideals of R} = {ideals of T'}.

Remark 4.2.3. We have J c T prime = J¢ prime. Note that / = R prime does
not imply I is prime (f(2), f(y) ¢ J = f(xy) = f(x)f(y) € J).
Example 4.2.4 (Example of I prime, /¢ not prime.). Let
f:z—2i),
n— n,

and let / = 5Z. We see I prime but /¢ = 5Z][i] not prime since (2 4+ i)(2 —i) = 5
since the left hand side terms are not in /¢ and the right hand side term is in I°.
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Definition 4.2.5. Given f : R — T, and ideal I of R is called contracted if there is
J, such that I = J°. Similarly, an ideal J of 7" is called extended if there is / such
that J = I°.

Lemma 4.2.6. We have
VIC R, I*“21,

VST, J°C J.

Further we have
VI < R, I = 1I°,

VJ C T, Je = J°.

Proof. First two statements are routine check. For the last two, we see [°° =
(I1¢)ec < I°¢. Also we have [ = ([¢°)¢ 2 [°. Same for J. O

Corollary 4.2.7. We have that for all I < R contracted 1°° = I. For all J < R extended
J° = J. Hence
{I < R contracted} = {J < T extended)}

are bijections.

Lemma 4.2.8. Let f : R — T ring homomorphism, let 1, I, ideals of R and J;, J, ideals
of T, we have

(1). (I + L) =I¢ + 15,

(2). (I11y)° = I{15,

(B). (hnl)cIfnls,

(4). r(I)c <r(l°),

(5). (I, : L)* < (I¢ : IS).
On the other hand,

(1). (J1+ J2)¢ 2 Jf+ Js,

(2). (J1J2)¢ 2 JiJs,

(3). (J1nJo)e=J¢n JS,

(4). r(J)c =r(J°,

(5). (Jy: o) = (Jg: JS).
Proof. Routine check. O
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Proposition 4.2.9. Let f : R — T be ring homomorphism. Then I < R is prime and

contracted <= T contraction of a prime ideal. Also J < T prime and extended 2
extension of a prime ideal.

Proof. (&) : I = J°¢ with J prime implies that I prime as seen above.

(&) : J extended = (J¢)¢ = J. Then J prime implies that /¢ prime hence .J

is extension of prime.

(g) : To be completed. O]

Corollary 4.2.10. If f : R — T homomorphism such that every ideal of T' is extended.
Then
{contracted ideals of R} < {ideals of T'}

are bijective and
{prime ideals of R} = {prime ideals of T'}.

Example 4.2.11 (Example of quotient map). Let K < R be an ideal of R and let
f:R— R/K,
r—z+ K
be the quotient map. Then we have
(1). ForallI c R, I° = {z+ K,zel})= (I + K)/K.

(2). Everyideal of R/K is extended. Ideal Jof R/Kis [ = I/K for I = |J z+
z+KeJ
K.

(3). The contracted ideals of R are the ideals of R containing K. For K < I < R,
we have [¢ = [ /K.

Hence I — I/K gives a bijection, we see

bijection

{ideals I, K < I < R} — {ideals of R/K},

bijection

{primeideals I, K < I < R} — {prime ideals of R/K}.



Rings of Fractions

5.1 Definitions and Universal Properties
Let R be a commutative ring.

Definition 5.1.1. We call S < R a multiplicative setif 1 € S,0 ¢ S, and S is closed
under multiplication.

Definition 5.1.2. Let S < R be a multiplicative set. The ring of fraction is
. T
S R:{g]xeR,seS}/fv,

where £ ~ ¥ if 3y € S such that uzt = usy. Wecansee £+ Y% = 288 gnd £ x ¥ — 2
well defined (with respected to equivalence relation).
Proposition 5.1.3. The data (S™'R, +, x, 2, 1) is a ring. The map

e:R— SR,

T
T — —
1 ?
is a ring homomorphism, which we call the “fraction map”.

Notation: The set of units (invertible elements for multiplication) in a ring R
is denoted by U (R).

Remark 5.1.4. The image of map €(S) = {2,s€ S} < U(S™'R).

Proposition 5.1.5 (Universal Property). Let S = R as a multiplicative set. Then

37
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1. If ¢ : R — T is a ring homomorphism such that ¢(S) = U(T), then there exists
a unique ¢ : ST'R — T ring homomorphism such that ¢ = ¢ o € such that the

diagram
R i » T
Y o
SR

commautes.

2. The ring S R is uniquely determined by this property.

5.2 Ideal Correspondence for the Fraction Map

Notation: Let S = R be a multiplicative set. Let I < R, we denote S™'/ =
{Zlrel,se S}

Lemma 5.2.1. Let S < R be a multiplicative set, let

e:R— SR,

z
T— —.

1
The extension and contraction of ideals through e satisfy
(1). Forall1 € R, I¢ = S71I
(2). Every ideal J of S™' R is e—extended. The ideal J = S~'I for some ideal I of R.
(3). We have S~'I # S™'Rifand only if I n S = &.

s

Proof. (1). By definition, we have [° = ({{,z € I}) = {3)/_, |y € I, 5 € S},
then by putting to same denominators we have {¢|z € [,s € S} = S7'I.

(2). Let J be ideal of S™'R, let I = {z € R|% € J}. Easy to check I is ideal of R
and J = S7!I.

(3). We have
1
S_lfzS_1R<:>3xel,33€S,z =7
s
<= drel,du,s e S, ux = us

— Jyel,HteSy=t=1nS # .

Hence the lemma. O
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Proof of the one direction of Proposition 4.2.9 (1). Let f : R — T be a ring homomor-
phism and let / < R be prime contracted ideal. Let S = f(R\I) = {f(x)|x € R\I}.
Then I contracted implies that /°° = I from previous results. Then I° n S = ¥

(see picture).

R L1

\

I

@

K-1

@/

Then I prime implies that S is a multiplicative set (indeed z,y € R\I implies that
f(x)f(y) = f(zy) e Sand 1 = f(1) e Sand 0 ¢ S since [ N S = .
Let
e: T — ST,
T
T T
be the fraction map. The corresponding picture we will need is below.

@LT . B

I\

@
S
Nt

KL

@/

Then I° N S = ¢f with the previous result implies that S~'7¢ # S~'T. This implies
that there exists a maximal ideal M of S~'T containing S~'I¢. Since any ideal of
S~1T is e—extended, we have M = S~!P where P is the e—contraction of M. Then
M prime implies P prime. Further S™'P ¢ S~'T implies that P n S = &&. Thus
I° < P < T\S. Hence P¢ = I which shows [ is contraction of a prime ideal. =~ [

Proposition 5.2.2. Let S < R be multiplicative set and let
e:R— SR,
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then
(1). Every ideal of S~' R is extended and I¢ = S~'1.
(2). The contracted ideals are | < Rsuchthat x ¢ I,s€ S = sx ¢ I.
(3). The contracted prime ideals are I = R prime such that [ n S = . Hence | ——
S1I gives bijection
{I < Rideal s.t.Nx ¢ I,Vse€ S,sx ¢ I} LR {ideal of S™' R},
(I < Rprimeideal I A S = &} < {prime ideal of S~ R}.
Proof. (1). Already proved.
(2). Ideal I contracted if and only if /*° = I. Let x € R, then

rel“<—=zxe (S_II)C@)%ES_II

(:)33;6[,368,%:gﬁﬂye[,u,seS,ustuy
s

<~ dte S;trel.
Hence [*° = {x € R|3t € S,tx € I}. We have I contracted if and only if
I*“ = T'ifand only if Vo ¢ I,Vt e S, tx ¢ 1.

(3). Let I < R prime, then I n S = J implies Vo ¢ I,Vs € S,sxz ¢ I implies

that I is contracted. Also I n S ¢ ¢ implies that /¢ = S™'R implies that

I°¢ ¢ I implies that I not contracted. Hence / prime is contracted if and only
ifInS=y.

Hence the proposition is proved. O

We have the bijection

{I < R\S prime ideal} =8 {prime ideal of S™'R}.

Notation: Let P < R be prime ideal, S = R\P is a multiplicative set and we
denote Rp = S 'R. For I < R, we denote Ip = S~'1.

Remark 5.2.3. For P < R prime ideal, one has the following ideal correspon-
dences g
{I prime ideal of R, I < P} LR {prime ideal of Rp},

{I prime ideal of R, I > P} R {prime ideal of R/P}.
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Remark 5.2.4. For P < R prime ideal, by above bijections we see that Pp is the
unique maximal ideal of Rp. Hence Rp is alocal ring and Rp/Pp is a field (residue
tield of Rp at Pp). The fraction map

R—)RPJ

Xrr— —,

is called localization at P.

Example 5.2.5. Let R = C[ Xy, -+, X, ], P < R be prime ideal. Then the local ring
Rp = {§|f,gpolynomial,g ¢ P} < C(Xy, -, Xn).

Let Z(P) = {(x1,--- ,2,) € C"|Vf € P, f(z1,--- ,x,) = 0}, this is the “algebraic
variety defined by P”. Then Rp is the ring of rational functions which are defined
“almost everywhere” on Z(P). We see Pp is rational functions which are 0 on

Z(P). The quotient Rp/Pp “identify rational functions if they have same value on
Z(P).



Localizations of Modules

6.1 Definitions and Construction as “Extension of
Scalars”

Definition 6.1.1 (Module of Fraction). Let R be aring and S < R be multiplicative
set. For a R—module M, we define the S~' R—module S~ M as follows

* The module S™'M = {%|z € M,s e S}/ ~, where £ ~ 4 if Ju € S, utx = usy.

z Yy _ tr+sy
* Thesum 7 + 4 = =%,

e The product £ - £ = 2 where Z € S"'Rand 2 € S~'M.

Claim: The operations are well defined (with respect to equivalence relation)
and give S~'M the structure of S~'R—module (if £ ~ ¥ then £ ~ %2 _ 2 . Y)

s uts uts

Proof. Exercise. O

Remark 6.1.2. Note that the module S™'M is actually a (R, S™'R)—bimodule
(with R—action, % := =*). This is a restriction of scalar construction correspond-
ing to the homomorphism e : R — S™'R.

Proposition 6.1.3. We have S™'M ~ ST R ®p M as S~ R—module.

Remark 6.1.4. This shows that S~'M is an “extension of scalar” construction cor-
responding to e : R — S7'R.

Reminder: Let R, T'be commutative rings, then

(1). The data M is a (R,T)—bimodule if it is R—module and 7—module and for
all € R, forallt € T, for all z € M, we have r(tz) = t(rx).

42
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(2). If f : R — T is a ring homomorphism, then any 7'—module M is auto-
matically a (R, T")—bimodule when defining the action of R by Vr € R,Vz €
M,rz = f(r)z where the left hand side is r action and the right hand side is
t action. This is the restriction of scalars. Example: The map f = ¢ fraction
operation.

(3). If M is R—module and N is (R, T)—bimodule, then the tensor M ®z N is a
(R, T)—bimodule when defining the action of 7" by: Vt € T',Vz € M,Vy € N,
we have t(r ® y) = z ® (ty).

4). If f : R — T is a ring homomorphism, then T is a (R,T)—bimodule by
restriction of scalar. Hence for any R—module M, we have T"®zr M is a
(R,T)—bimodule. This is extension of scalars.

Example 6.1.5. The module S R®p M isa (R, S~'R)—bimodule (using f = € the
fraction map).

Proposition 6.1.6. For all R—module M, then S~'M ~ S™'R®g M as S~ R—module
with isomorphism such that T % X T.

Remark 6.1.7. If A ~ B as S"'R—module then A ~ B as (R, S~'R)—module (by
restriction of scalars).

Proof. We prove by

¢ Consider the map
g:S'M — ST'TR® M,
T 1
—— -,
S S

is well defined (respects equivalence relation since Vu € S, g(“£) = L @ua =
1@ = g(%)) and is S~'R—bimodule.

¢ The map
f:STIRx M — S7'M,
T rx
(g7x) — ?7

is R—linear. Hence there exists f* : ST'R®M — S~'M such that L@z — L.
¢ Easy to check that f*g = Id and gf* = Id.

Hence f*, g are isomorphisms of S~! R—module. ]

Corollary 6.1.8. Let M, N be R—modules, then
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(1). Wehave ST*M@S™'N ~ SH (M@ N) as S~ R—module with isomorphism such
that (2, Y) — (220),

st

(2). Wehave ST*TM®S™'N ~ SH (M ® N) as S~ R—module with isomorphism such
that L@ ¥ — 22U,

Proof. We have the isomorphisms

STITM@®S'N~(ST'RIM)®(ST'RON)~S'RR(MON)~S ' (M®N)

given by the maps
x oy 1 1 1 1 1 (tx, sy)
<8’t) (S®x7t®y)_(8t®tx78t®8y) St®(t'rusy> st :

Similarly consider the isomorphism
STM®s-1g ST'N ~ S M ®s-1g STTRQr N
~ (ST'M®g-1g ST'TR)@r N~ ST'M®r (M ®g N) =S 'R(M®N),
where the isomorphisms are given similarly (...). O
Lemma 6.1.9. If A is R—module, B is (R,T")—bimodule and C' is T'—module then
(A®r B)®r C ~ A®R (B®r C)
with isomorphism such that

(TRY®z— 1R (YR=2).

6.2 Flatness for Modules of Fractions

Reminder:

(1). A sequence of R—module homomorphism

(]

is exact if Im(f;) = ker(fi+1). A short exact sequence is an exact sequence of

the form
00— A—B—C—0.

(2). A functor § : R — Mod — R — MNlod is called exact if for all sequence exact,
we have F(seq) is exact.
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Remark 6.2.1. If § is exact, then
(1). If f is injective then §( f) is injective (Using 0 — A . B exact).

(2). If f surjective then §(f) surjective (A B — 0).

(3). We have §(M/N) ~ F(M)/F(N). Using0 - N — M — M/N — 0 ex-
act hence 0 — F(N) — §F(M) — F(M/N) — 0 exact hence F(M/N) ~
§(M)/F(N) by first isomorphism theorem.

Lemma 6.2.2. The functor § is exact if and only if for all sequence short exact, §(seq) is
short exact. That is, there exists N; such that the diagram

> M,

» Mipo —

NGO N0

TN N N

commutes.

Reminder (3). Let M be a R—module, we define §; : R — Mod — R — Nlod
by §m(A) = M ® Aand Fa(9) = Idy ® g. Module M is called flat if §,, is exact.

Example 6.2.3. We have R is a flat R—module (deduced from the isomorphism
R® A ~ A).

Lemma 6.2.4. Let segbe A% B 5 € — 0 of R—module. Then for all R—module M,
seq is exact implies that §y;(seq) is exact.

Proof. Suppose seq is exact, then [ is surjective and Im(«) = ker(3). Want to show
Id)s ® B surjective and Im(Id ® a) = ker(Id ® 8). Then we see

e Forall z € M, forall c € C, we have x ® ¢ € Im(Id ® ) because there exists
be B,B(b) =cand 2 ®c = (Id® ) (z ®b). Pure tensors x ® ¢ generate M ® ¢
hence Id ® j, say.

* Wehave foa— (Id®f) o (Id®a) = (Id® (8o «)) = 0. Hence this implies
Im(Id ® a) < ker(Id ® 5).

e Let/ =Im(Id®a)andlet ¢ : M ® B — M ® B/I be the quotient map. Let

fM®B/I — M®C,
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y+ 11— (1d®p)(y),

then f is well defined since I < ker(Id ® ). Moreover Id® 5 = f o ¢. In
order to prove ker(Id ® ) = I it suffices to prove f is injective. Let

g:MxC— (M® B)/I,

(x,0) — @b+ 1,
where b € 371(C). We see g is well defined: if b, € 71(C) thenz @b + I =
x®UV + I (because b — V' € ker(8) = Im(a) = 2 ®b — 2 ®V € I). Since g is
bilinear, there exists ¢* : M ® C' - M ® B/I such that t ® ¢ — x® b + [ with
be 71(C). Moreover g*o f = Id since g*o f (x®b+1) = g*(2®p(b)) = 2@b+1.
Hence f is injective.

Hence If A > B — C — 0 exact then VM, Fy,(A — B — C — 0) is exact. O

Corollary 6.2.5. A R—module M is flat (Fy is exact) if and only if Yoo : A — B
injective, the R—module homomorphism Idy; & o is injective.

Proof. (=>): Clear: 0 — A —*> B exact implies 0 — M ® A v (v r @ B exact.
(==): Suppose for all a injective, Idy; ® a injective, then together with the
above property, we have §,,(shortezact) is short exact. Hence §, is exact. O

Corollary 6.2.6. For all S = R multiplicative set, the R—module S~ R is flat.

Proof. Let « : A — B be an injective R—module homomorphism, want to show
ker(Idg-1g ® @) = 0. Any element of S™'R ® A can be written as % ® z, where
se S,x € A. Then

1 1
IdS—1R®Oé<g®x) =0= ;@a(a) =0

ala)

=0in S'A = Jue S ualr) =0

—

s
= Jue S,a(ur) =0

— Ju € S, ux = 0 since « injective

— 2 _oins'B
S

1
— — ®a = 0 by isomorphism.
s
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Notation: For S < R multiplicative set and a : A — B R—module homomor-
phism, we define
Sla:ST'A— STIB,
x a(x)

— —

s s
Remark 6.2.7. The isomorphism f4 : ST'TR® A — S~'A “send” the homomor-
phisms Idg-1z ® a to S~ in the following sense:

Ids_1R®a

STTR® A » STTR® B

12
12

S—1A 5a y S1B

Up to this “change of notation”, Corollary 6.2.6 says that for any exact sequence
of R—module
i fl 1
o M AL

The sequence
s S S g, T
is exact sequence of S~' R—modules.
Corollary 6.2.8. We have
o The map « is injective => S~ « is injective,
o The map (3 surjective = S~ 3 surjective,

 We have the isomorphism S~ (M/N) ~ ST M /S™'N with isomorphism “% «
L4+ SN,

Proof. We see

* The sequence 0 — A % Bexact = - -,

* The sequence A % B - 0exact = - -,

* The sequence 0 — N — M — M/N — 0 exact with the middle map
r — x+ N. Also 0 - S7IN - 7'M — S7Y(M/N) — 0 exact with
the middle map £ — ZN By first isomorphism theorem, this gives

“YM/N) ~ S=1M /STIN with the claimed isomorphism.

Hence the corollary. O
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Remark 6.2.9. Let ) = P be ideals of R, with P prime, by above corollary, we have
(R/Q)p ~ Rp/Qp are isomorphic R—module. But in fact it implies (R/Q)p/o =~

Rp/Qp as rings with the isomorphism fjig < Z+Qp.

Example 6.2.10. Homework 6...

Example 6.2.11. Extension of scalars preserve flatness. Let ¢ : R — T ring homo-
morphism. If M is flat R—module, then T"®z M is a flat T—module.

Corollary 6.2.12. The module M is a flat R—module implies that S~'M is a flat
S~ R—module.

6.3 Local Properties of Modules and Rings

Notation: For P < R prime ideal, we denote Rp = S~'R where S = R\P. We
denote Mp := S~'M for R—module M and ap := S~ 'a for homomorphism a.

Definition 6.3.1. A property of a ring/module/homomorphism is local if X has
property if and only if Xp has property for all P < R prime.

Proposition 6.3.2. The following are equivalent:
(1). The module M = 0,
(2). The module Mp = 0 for all P < R prime ideal,
(3). The module Mp = 0O for all P < R maximal ideal.

Proof. (1) = (2) = (3) are obvious.

For (3) = (1), let M be such that Mp = 0 for all P maximal ideal. Suppose for
contradiction there exists = # 0in M, let Ann(x) = {r € R|rz = 0}. This is a proper
ideal because it does not contain 1. This implies that 3P maximal at Ann(z) < P.
Then Mp = 0 = £ = 0in Mp = Ju ¢ P,ux = 0. Hence u € Ann(z)\P, a

T =
contradiction. O]

Proposition 6.3.3. The following are equivalent for ¢ € Hompg(A, B),
(1). The map ¢ is injective,
(2). The map ¢p is injective for all P < R prime ideal,

(3). The map ¢p is injective for all P = R maximal ideal.
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Proof. (1) = (2) already proved.

(2) = (3) is obvious.

(3) = (1): Suppose ¢p injective for all P maximal. Let M = ker(¢), the seq
that 0 — M — A % B is exact implies that for all P maximal, the sequence

0 — Mp — Ap %5 Bp exact. The map ¢p is injective implies that VP maximal
ideal Mp = 0 which implies M = 0 by proposition above. O

Proposition 6.3.4. Same as the above proposition but with “surjective”.
Proposition 6.3.5. The following are equivalent for a R—module M,
(1). The map M is flat R—module,
(2). The map Mp is flat Rp—module for all P <= M prime,
(3). The map Mp is flat Rp—module for all P = M maximal.

Proof. (1) = (2): Already “proved” (extensions of scalars preserves flatness).

(2) = (3): Obvious.

(3) = (1): Sketch: Suppose Mp is flat for all P maximal, want to show for
all ¢ injective, the map Idy ® ¢ is injective. For all P,Idy;, ® ¢p injective. Also
Idpr, ® pp ~ (Idy ® ¢) p via isomorphism implies (Idy; ® ¢) p is injective for all P.
This implies that Id); ® ¢ is injective. [



Noetherian Rings, Noetherian Modules and
Hilbert’s Nulistellensatz

7.1 Closure Property for Noetherian

Reminder: Let M be a R—module, the following are equivalent:
* Any strictly increasing sequence of submodule is finite,

* Any submodule is finitely generated.

If these property hold, then M is called Noetherian.

Definition 7.1.1. A ring R is Noetherian if it is Noetherian as R—module. That is
to say

(1). Any strictly increasing sequence of ideals is finitely generated.
(2). Any ideal is finitely generated.

Proposition 7.1.2. Let M be a R—module, and N < M submodule, then M is Noethe-
rian if and only if N and M /N are Noetherian.

Proof. (—): The submodule of N and M /N are in bijection with subsets of sub-
modules of M, hence no infinite strictly increasing sequence.

(«=): Suppose N and M /N are Noetherian, let P < M be submodule, then
P/(Pn N) ~ (P + N)/N is finitely generated and P n N is finitely generated
(generators z1 + P n N,--- ,x; + P n N and generators yi,--- ,y;). Thatis P is
finitely generated (generators z1, -, Zg, Y1, , Y1) H

Corollary 7.1.3. The module M,, M, are Noetherian if and only if M, @ My is Noethe-
rian.

50
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Proof. Let My = {(x,0),z € My} = M, @ M,. Then M, ~ M, and (M, @ My)/M; ~
M,. Apply previous prop to M = M; @ My and N = M;. l

Corollary 7.1.4. If R is Noetherian, then M is Noetherian R—module if and only if M
is finitely generated R—module.

Proof. (<) : Obvious.
(=) : If M is finitely generated, then M ~ R*/N for some N < R*. Moreover,
R* is Noetherian by Corollary 7.1.3. O

Theorem 7.1.5 (Hilbert’s Basis Theorem). If R is Noetherian ring, then for any n, we
have R[ Xy, -- -, X,,] is Noetherian ring.

Proof. It suffices to show R is Noetherian implies R[.X] is Noetherian. Let R be
Noetherian, let / < R[X] be an ideal, we want to show I is finitely generated.
Suppose itis not, let ) = 0 and for all j > 0, let P; € I\(F, - - - , Pj_1) such that
P; is of minimal degree in this set (note that deg(F;) is weakly increasing).
Let a; be the leading coefficient of P;, since R| X | is Noetherian, it has an infi-
nite increasing chain of ideals. There exists & > 0,a; € (a1, - ,a,—1), hence a;, =
S irja;, € R Let P = P—Y1 | r; X48(P)=de(P) P, then P e I\(Py, - , Pi-1),

j=1

and the degree deg(P) < deg(F%). This contradicts the choice of P. O

Recall that T' is a finitely generated R—algebra if there is z,--- ,z,, € T such
that any ¢ € T' can be written as a polynomial in x4, - - - , z,, with coefficients in R.
Equivalently, there is surjective R—algebra homomorphism from R[X7, -, X,,]
toT.

Corollary 7.1.6. If R is a Noetherian ring, and T' is a finitely generated R—algebra, then
T is a Noetherian ring.

Proof. The algebra 7 is the image of Noetherian ring R[ X7, - - - , X,,] hence Noethe-
rian (quotient of Noetherian is Noetherian). [

7.2 Hilbert’s Nullstellensatz

Theorem 7.2.1 (Hilbert’s Nullstellensatz). Let K be algebraically closed field, let R =
K[Xy, -, X,|and let I < R ideal and let Z(I) = {z € K"|Vg € I,g(x) = 0}. For
polynomial f, we have that f(x) = 0,Vx € Z(I) if and only if f € r(I).

Example 7.2.2. Let I = (X7, X5), Z(I) = {(0,0)}. The theorem tells us f((0,0)) = 0
ifand only if f e r(1) = (X3, X2).

Lemma 7.2.3 (Zariski’s Lemma). Let K < E be a field extension, if E is finitely gen-
erated K —algebra, then E is finite dimensional (hence algebraic) over K.
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Proof of Theorem 7.2.1, “Hilbert’s Nullstellensatz”. (<) : We have f € r(l) —
k=0, f el —3k>0,f50) = 0,Voe Z(I) = f(x) = 0,Vx e Z(I).

(=) : Let f ¢ r(I), we want to show that there exists € Z(I) such that
f(x) #0.

Idea: Any ring homomorphism ¢ : R — K such that ¢|x = Id is an evaluation
map ev, : g — g(z) for some z € K" (z = (z1,--- , %), z; = ¢(z;)). Hence any
ring homomorphism ¢ : R — K such that ¢|x = Id and ¢|; = 0 is ev, for some
x € Z(I). Therefore need to find a ring homomorphism ¢ : R — K such that
¢lx =1dand ¢[; = 0,¢(f) #

Let S = {f*|k > 0} Thls isa multlphcatlve set of R, and we have f ¢ r(/) =
SnI =g = S is proper ideal of S'R = S~'I = M maximal ideal of
STR. Let

6: R s [ =ST'R/M
fractim %&nt
S7'R

We observe ¢|; = 0 since S™'I < M and ¢(f) # 0 since { is invertible in
ST'R — { ¢ M. Moreover T ~ K. Indeed, T is a field since M is maximal

ideal. Also T is finitely generated over K (indeed S™'R = { ﬁ ,Pe Rk > 0}
with generators %, .-, %, 1) Hence T = S~'R/M is finitely generated. Hence
by Zariski’s Lemma (Lemma 7.2.3), we have T is algebraic over K. Then K is al-
gebraically closed implies that T = K, where K is copy of K inside T'. Hence

up to composing by an 1som0rphlsm K — K we get ¢ : R — K such that
Pl =1d,0(I) = 0,6(f) # -

It remains to prove Zariski’s Lemma. We first claim a lemma.
Lemma 7.2.4. Let R < S < T be ring (hence S, T are R—algebras), suppose:

* ring R is Noetherian,

» T'is finitely generated R—algebra and finitely generated S—module,
then S is finitely generated R—algebra.

Proof. Let zy,--- ,x, be generators of T' as R—algebra, y1, - - - , Y, be generators of
T as S—module. Then y,--- ,y, generators implies that there is s;; € S,z; €
2. Sijyj, hence there is s € S,yiy; = > siywys. Let S = R[{sy, siji}] be
R—algebra generated by s;;, s;;;, wehave R S < S T.

Since ' is a finitely generated R—algebra, S’ is Noetherian ring. Any z € T
is a polynomial in the z;, hence a linear combination of y;, with coefficients in S’.
Hence T’ is a finitely generated S’ module. Therefore 7" is Noetherian S’—module
(since S’ Noetherian).
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Further, S submodule of 7" implies that it is a finitely generated S'—module.
Lastly, S’ finitely generated R—algebra and S finitely generated S’'—algebra im-
plies that S is finitely generated R—algebra. O

Now we are to prove the Zariski’s Lemma.

Proof of Lemma 7.2.3, “Zariski’s Lemma”. Let K < E be a field extension such that
FE is finitely generated K —algebra, we want to show E is finite dimensional over
K.

Let zy,---,x, be generators of £ as K—algebra, it suffices to show that
x1, - ,x, are algebraic over K.

Suppose not and order the z; such that Vi = 1,---,r, z; is not algebraic over
K(zy, -+ ,z;-1) and Vi = r + 1,--- ,n,z; is algebraic over K(xq,---,z,). Let
F = K(z1,---,z,) < E be field generated by z1,--- ,2, ~ K(zy1,--- ,z,) fields
of rational functions in n variables. Then £ = F(z,41,- - - ,x,) is finite F—module

and F is finitely generated K —algebra together with previous lemma implies that
F is finitely generated K —algebra.
Let fi,---, fx be generators of K(xy,--- ,z,) over K. Let P,---, P, be the ir-

reducible polynomial dividing the denominators of fi,-- - , f;. Then any denomi-
nators of K|[fi,- -, fi] is constant or multiple of one of the P,.
But ﬁ is not of this form, which is a contradiction. O

7.3 Some Link to Algebraic Geometry

Definition 7.3.1. Let K be an algebraically closed field, let R = K[X;, -+, X,],
then

e ForY ¢ K", wedefine I[(Y) = {f e R|f(z) =0,Vz e Y},
e For S € R, we define Z(S) = {r € K"|f(z) =0,Yf € S}.
A set of points of the form Z(95) is called algebraic set.

(Claim: Any algebraic set is of the form Z(.J) where J is a radical ideal (that
is, 7(J) = J) and {Y < K™ algebraic set} % {J < Rradical ideal} are inclusion

reserving bijections.)

Remark 7.3.2. (1). The map I, Z are inclusion reserving, that is
Y <Y, I(Y)2I(Y),
Sc S, Z(S)2Z(5).
(2). Forall S ¢ R, we have Z(S) = Z((5)) = Z(r(95)).
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Example 7.3.3. We have Z({X}}) = Z((X?)) = Z((X1)).
By above, any algebraic set is of the form Z(.J) where J is radical ideal.
Remark 7.3.4. (1). Forall Y, (Y) is clearly an ideal and a radical ideal.

(2). Hilbert’s Nullstellensatz can be stated as follows: for all J ideal, we have
I(Z(J)) = r(J) (no more than r(.J)).

Example 7.3.5. We see I(Z(X?)) = (X3).
Consequently, we have
e forall J radical ideal, I(Z(J)) = J,

e forall Y algebraic set, there exists J radical ideal such that Y = Z(.J), hence,
Z(1(Y))=z(1(z(J))) = Z(J) =Y.

Corollary 7.3.6. We have I, Z are inclusion reversing bijections that
{Y < K" algebraic set} % {J < R radical ideal}.

Remark 7.3.7. We have that
(a). Theidentity I(Y; u Ys) = I(Y7) n I(Y2),

(b). If Jy, J, are radical ideals, then J; n J, is radical ideal and Z(J, n J;) =
Z(Jl) U Z(JQ)
Proof. (a). Clear.

(b). We have J; n J; radical ideal because r(J; n Jo) = r(J1) nr(Je) = J1 n Jo.

Then [(Z(Jl N JQ)) = Jl M JQ = I(Z(Jl)) M [(Z(JQ)) (i) [(Z(Jl) U Z(JQ)) and
I is a bijection.
O

Remark 7.3.8. Part (b) above implies that finite union of algebraic set is algebraic
set. Also since arbitrarity the intersection of algebraic set is algebraic set (home-
work).

Definition 7.3.9. An affine algebraic variety (AAV) is an algebraic set which is
not the union of smaller algebraic set.

Corollary 7.3.10. We have I, Z are bijection

g #{Y < K", AAV} «— {I < R prime ideal}.
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Proof. By Remark 7.3.7 (b), we have Y is affine algebraic variety if and only if Y =
Z(J) with J irreducible radical ideal, where irreducible means “not intersection
of bigger ideals”. Moreover,

e if J is prime then J is radical and irreducible (exercise from homework 4
shows that prime means irreducible, P = n[; = P = I)).

¢ Conversely, suppose J is radical and irreducible, then J radical implies that
J =1(J) = (Vjcp prime P~ Also J irreducible implies that ./ is one of the P,
hence prime.

Hence the bijection. O

Definition 7.3.11. Let Y < K" be algebraic set, then R(Y) = R/I(Y) is called
affine coordinate ring (“polynomial f on Y”).

Remark 7.3.12. We have
* The set Y is affine algebraic variety if and only if R(Y) is a domain.

e {point on Y} is in bijection with {maximal ideals of R containing Y}, which
is in bijection with {maximal ideals of R(Y)}.

Explicitly y € Y — M(Y,y) = {f € R(Y)|f(y) = 0}.
Definition 7.3.13. Let Y < K" be affine algebraic variety, then
e U cYisanopensetif U =Y\Z(S) for some S < R,
¢ A regular function of U < Y is p : ¥ — K such that 3f,g € R,Vx €

U,g(z) # 0and p(z) = %.

Notation: We say O(Y') = {regular functionon Y} and O(Y,y) = {(U,p)|y €
U open set of Y, p regular on U} where (U, p) ~ (U’, ') if and only if there exists
Vopensety €V < U n U’ such that p|y = p'|v.

Theorem 7.3.14. We have
(1). the isomorphism O(Y') ~ R(Y') as rings, where the isomorphism is given
a:RY)— O(Y),

f— fly as a function.
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(2). forally € Y,O(Y,y) ~ R(Y)mry <— {7 € R(Y)|g(y) = 0} where the right
hand side of the isomorphism is a localization at M(Y,y). The isomorphism is

given by
/8 : R<Y)M(Y,y) - O(}/’ y)7

é — (v, i|v), where U = {x € Y|g(x) # 0}.
9
Definition 7.3.15. Let Y, Y” be affine algebraic varieties, a function ¢ : ¥ — Y'is a

morphism of affine algebraic varieties, if U < Y’ open, for all p : U — K regular,

then p o ¢ regular on ¢~ (U).
The definition can be viewed as the following commutative diagram:

: i

Theorem 7.3.16. We have Y ~ Y' ifand only if R(Y') ~ R(Y"). In fact there is function
F:Y — R(Y)such that & : Hom(Y,Y") — Hom(R(Y"), R(Y")) is a bijection.



Primary Decomposition of Ideals

8.1 Reduced Primary Decomposition

Motivation:
* decomposing algebraic set into variety,

* “replacing” factorization of elements in Noetherian rings which are not
UFD.

Example 8.1.1. Consider R = Z[i\/5] < C, it is Noetherian but not UFD since
2.3 = (1+iv5)(1—iV5).

However, there is “semisimple” factorization of ideals.

Definition 8.1.2. Let R be a (commutative) ring. Any ideal () < R is primary if
Q # Rand z ¢ Q,y ¢ r(Q) implies that xy ¢ (). It has some equivalent phrasing;:

e If xy € @ then either x € Q or y € 7(Q),
e If xy € Q,x,y ¢ @ then there is some n > 0 such that 2™ € QQ and y" € Q).
Remark 8.1.3. Prime implies primary.

Example 8.1.4. Take R = Z, the primary ideal are of the form I = (p*),p prime
integer.

Example 8.1.5. If M is a maximal ideal then for all k, M* is primary.
Proposition 8.1.6. If ) is primary, then r(Q) is the smallest prime ideal containing Q).
Definition 8.1.7. We say () is P—primary if 7(Q) = P.

57
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Proof. Since 7(Q) = [Nocp prime I it suffices to show r(Q) is prime. We have zy €
r(Q) = Ik, 2*y* € Q with Q being P primary it then implies that 3k, m,such that
¥ e Q or y*™ € Q. Hence x or yis in 7(Q). O

Definition 8.1.8. Let / < R be ideal, then

* A primary decomposition of / is an expression of the form I = ﬂle Qi with
Q; primary.

* A primary decomposition is reduced if
(a)' fOI' au j? mi;&j QZ $ Qj/
(b). all the r(Q);) are distinct.
We call this reduced primary decomposition as RPD.

Example 8.1.9. If R = Z, there exists unique RPD for any ideal. The RPD of
(pY" - plr) is VL, (7).

Lemma 8.1.10. If )1, Q2 are primary such that r(Q)1) = r(Q2), then Q@ = Q1 N Q2 is
primary and r(Q) = r(Q1) = r(Q2). Thus from any primary decomposition one can
create a RPD.

Proof. We see
* r(Q) =7(Q1n Q) =1(Q1) nr(Q2) = r(Q).

* Qisprimary,zy € Qandy ¢ r(Q) = r(Q1) = r(Q2) implies that x € Q1N Q)3 =
0.

¢ Thusif Q; = Q;, reduce Q;,Q,; by Q; n Q.
Hence the lemma. O
Example 8.1.11. Take R = C[X, Y], then I = (X? XY) has (at least) 2 RPD:

I=(X)n (X% XY,Y?) = (X)) (X%Y).

Notation: For / < Rideal, and z € R, wesay (I : z) = {r € R|rz € I} (thisis an
ideal containing 7).
Theorem 8.1.12. If I = (", Q; is RPD then

{r(Q1), - ,1(Qm)} = {prime ideals of the form r(I : z),z € R}.

Example 8.1.13. Take R = C[X,Y],I = (X* XY), then r(X) = (X) =r({ : V)
and r((X?, XY,Y?) = r((X3Y)) = (X,Y) = r({ : X). Forany z # X,Y either
r({:z)=(X)or (X,Y)orisnot prime.
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Lemma 8.1.14. If Q < R is primary then for any x € R, we have

) = R ifre @,
@ {r(@) ¢ Q.

Proof. We have
c1eQ—(Q:x)-R—1(Q:2) - R,

ox¢Q,yer(Q:x)<:>3n>O,y”erQgryElm>O,ymeQ<:)ye

(@)

This gives the lemma. O

Proof of Theorem 8.1.12. Let I = ()_, Q; RPD, observe that r({ : z) = r((()Q:) :

z) = r((NQi : ®)) = N(r(Qi : 7)) = [ quch that e¢0, T(Qi)- Now we want to show
{r(@1),- -+, 7(@m)} = {r(I : x) prime}.

(): reduced decomposition implies that for all j, there is z; € [, i Qi\Q;-
Hence r(I : z;) = r(Q;).

(2): Suppose r(I : x) is prime, r(I : ¥) = (), .40, 7(Q:) since prime ideals are
irreducible (cannot be written as intersection of bigger ideals), we get r({ : z) =
r(Q;) for some I. O

Theorem 8.1.15 (Weak Second Uniqueness Theorem). Suppose I = ()_, Q; is RPD,
if j € [n] is such that r(Q);) does not contain r(Q;), Vi # j, then Q; appears in every RPD

of 1.

Example 8.1.16. Consider the ideal ] = (X? XY) < C[X,Y]and I = (X) n
(X2, XY,Y?),r(X) = (X) does not contain r(Q;),i # j. Hence (X) will appear in
every RPD.

Stronger version: forall S < {r(@Q;)} closed downward, (), 4, @ is indepen-
dent of RPD.

Lemma 8.1.17. Let Q < R primary ideal and let S < R be multiplicative set, then
Q n S = implies

(@). r(Q)n S # &,
(b). Q is a contraction (for the fraction map ¢ : R — S™'R),
(c). S~1Q is also primary.

Proof. We check one by one.
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(a). Suppose r(Q)) NS # J,thendzr e Ryn > 0,x € S,2" € Q hencez" € Q n S
which implies Q n S # J, a contradiction.

(b). Recall @ is contractionifand onlyif se€ S,z ¢ Q = sx ¢ Q. Letse S,z ¢ Q,
then S multiplicative set implies that Vn,s” € S thus Vn,s" ¢ (). Hence

s¢7(Q). Then Q) is primary so z ¢ Q, s € 7(Q) = sz ¢ Q.
(c). Easy check.
Hence the lemma. O

Remark 8.1.18. Easy to check that the contradiction of a primary ideal is primary.
Thus (b) above implies

{primary ideal I € R\S} "25" {primary ideal of S~' R},
I— S7'IL

Proof of Theorem 8.1.15. Let I = (), Q; = (., @} such that 7(Q;) = r(Q}). Sup-
pose 7(Q;) does not contain 7(Q;) for all i # j. Want to show Q; = Q). Let

S = Rr(Q,) Vi # Q) NS+ F -2 QinS#g— S'Qi = SR.

Thus S7'7 = S7H((), Qi) = ,(S7'Q:) = S7!Q;. Since r(Q}) = 7(Q;)Vi, the
same holds and S~'I = S7'((), Q) = (,(S7'Q}) = S7'Q}. hence S7'Q; = S7'Q)
and since Q);, @ are contractions, Q; = (S7'Q;)° = (S7'Q})° = Q. O

Theorem 8.1.19. If R is Noetherian, then any ideal admits a RPD.

Lemma 8.1.20. If R is Noetherian, then any ideal is a finite intersection of irreducible
ideals.

Proof. Suppose for contradiction that / cannot be written as finite intersection of
irreducibles. In this case there is Iy, .J; ideals of I = J;, n I; with I < I; and
I, cannot be written as intersections of ideals, I = Jy n Jy n Iy, I, < Iy, and
I.... We get (I,,) strictly increasing infinite chain of ideals. It is impossible in R
Noetherian. O

Lemma 8.1.21. If R is Noetherian, then I irreducible implies I primary.

Proof. Let I be irreducible, let z,y € R,zy € I,z ¢ I, we need to show y € r(I)
(consider ideals ({ : y"*) = {r € R,zy™ € I}). This is a weakly increasing chain of
ideal implies that 3In, (1 : y*) = (I : y"*).

We claim (I + z) n (I + y") = I. Indeed let z € (I + z) n (I + y"), then
ze(l+z)=zyel.Andze (I +y") = z=ry"+2,reR el = ry"tte
I=re(l:y")Y=U:y")=ry"el=z€el.

Since [ is irreducible, (and I + = # I), weget [ + y" = I. Hencey" € I = y €
r(I) as wanted. O
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Hence we showed

* The existence of RPD if 1 is Noetherian,

* First uniqueness: r(Q;) is uniquely determined,

e Second uniqueness: @); of “small” r(();) uniquely determined.

Example 8.1.22. If R is Noetherian, then any radical ideal I has unique decompo-
sition I = ();_, P, P, prime, P; 3 ,_, Pi. This induces that any algebraic set can
be written uniquely as finite union of AAVs.

8.2 Dimensions

Remark 8.2.1. In Z any ideal has a unique RPD. This is related to the fact that
dim(Z) = 1.

Definition 8.2.2. The dimension of a ring R is the maximal k such that there exists
Pyc P << P, < Rprime ideal.

Example 8.2.3. We have dim(Z) = 1, P, = (0), P, = (p) where p prime integers.

Remark 8.2.4. A domain R has dimension 0 if and only if R is a field.
A domain R has dimension 1 if and only if any prime ideal that is not 0 is
maximal.

Proposition 8.2.5. In a Noetherian domain of dimension 1, any ideal has a unique RPD.

Proof. If Ris Noetherian, this means that any ideal / has RPD I = () Q;. Moreover
(if I # 0), r(Q;) is maximal for all 7, hence second uniqueness theorem gives ();
are uniquely determined. O

Remark 8.2.6. If R is domain of dimension 1, then I = () Q; RPD if and only if
I = []Qi, Q; primary and r(@Q;) distinct.

Indeed, r(Q);) maximal distinct means that 7(Q;)+7(Q;) = Rforalli # j which
implies that Q; + Q; = R,Vi # j. This implies that (| Q; = [ [ Q: (Exercise).

Coming next: In integrally closed Noetherian domain of dimension 1, any
ideal can uniquely be written as product of prime (“Dedekind domain”).
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Integral Dependence and Nakayama Lemma

9.1 Nakayama Lemma

Lemma 9.1.1. Let M be a finitely generated R—module, let ¢ € Endg(M) and let I <
R ideal such that Im(¢) < I - M (I - M = {d rixy|r; € I,x; € M}). Then In >
0,71, ,7, € I such that ™ + ri¢g" ' +--- +r,Id = 0.

Proof (generalization of Caylay-Hamilton Proof). Let x4, --- , x, generators of M. For
all i, there exists a;; € I such that ¢(z;) = >, a;;x;, then

j=1
T 0
) 0

A . = . where A = (5U¢ — aide)ije[n] € Matn(EndR(M))
T 0

Let B = adjoint of A = “(cofactors of A), then

det(A) 0
B-A= : : where det(A) = det(d;;¢ — a;;1d) € Endg(M),

0 det(A)

where the right hand side is } ;.4 sgn(J).
21

x
We have BA ,2 = 0 implies that for all ¢, det(A)(x;) = 0 which means

T

det(A) = 0.

Corollary 9.1.2 (Nakayama). If M is finitely generated R—module, and I < R ideal
such that I - M = M, then 3x € I,(1 —x)M = 0.

62
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Proof. For ¢ = Idy;, we have Im(¢) < I - M. This implies that 3ry,--- , 7, € I such
that (1 +7 +---+7,)Idy =0. Takex = —(r; + -+ + 1y,). ]

Definition 9.1.3. The Jacobson ideal of R is J = ()pc g maxima I (it is a radical
ideal).

Proposition 9.1.4. We have J = {z € R|Yr € R, 1 + rx is unit}.
Proof. Homework 8. 0
Corollary 9.1.5. If M is finitely generated R—module and J - M = M, then M = 0.

Proof. By Corollary 9.1.2, thereisz € J,(1 —x)M = 0. Hencex € J =— 1 —zisa
unit hence M = 0. O

Corollary 9.1.6. Let M be finitely generated R—module, and N < M submodule, such
that M = N + J - M. Then M = N.

Proof. Wehave M = N+J-M — J-M/N = (N+J-M)/N = M/N — M/N =
0. ]

Corollary 9.1.7. Let R be local ring and let P be its maximal ideal, let M be finitely
generated R—module and let xy,--- ,x,, € M such that {xy + P-M,--- ,x, + P- M}
generates M /P - M as R/P—uvector space. Then x4, - - , z,, are generators of M over R.

Proof. Let N = R(xy,--- ,x,) < M submodule generated by z;,- - ,x,. We have
M =N+ P-M,since J =(); .., I = P. This implies M = N. O

9.2 Integral Dependence

Definition 9.2.1. Let R < T be rings, o € T is integral over Rif 3n > 0,71,--- ,r, €
Rsuchthata” + ra™ '+ -+ 17, = 0.

Example 9.2.2. We have
* Any a € Ris integral over R.
* For R field, o integral over R if and only if « algebraic over R.

e For R = Z,T = Q, only integers are integral over Z. If a = § € Q\Z, then we
can take ged(a,b) = 1by (%) + ()" + - -- + r, = 0. Then a” divisible by
b, which is impossible.

Notation: For R < T and « € T, we denote R[a] = R{a,a?, - ).

Proposition 9.2.3. Let R < T, the following are equivalent for o € T*:
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(1). The element « is integral over R,
(2). The module R[] is a finitely generated R—module,
(3). There exists S = R[] ring which is finitely generated R—module.

Proof. (1)==(2) because a" + r1a™* + -+ +r; =0, then R[a] = R{a, -+ ,a" ).
(2)=(3): Take S = R|a].
(B8)=(1): Let ¢ = alds : S — S is a R—module endomorphism. Then S is
finitely generated implies that 3ry, - - - , 7, € Rsuch that ¢" +r;¢" '+ -+7r,Id = 0.
Applying this to 15 gives a" + ria™ ' + - + 1, = 0. O

Corollary 9.2.4. We have o, - - - , oy, integral over R if and only if R[oy, -+, a,] is a
finitely generated R—module. Hence sums, difference, product of integral elements are
integral over R.

Proof. (=): Easy by induction on n ((1)=(2)).
(«=): Already proved ((3)==(1)). H

Thus any element in R[ay, - - - , o, ] is integral ((3)=—(1)).

Definition 9.2.5. Let R < 7' be rings. The integral closure of R in T is R = {ae
T'|a integral over R}.

Example 9.2.6. We have Z° = Z.
Definition 9.2.7. Let R < T, then

o If R =T, then T is called integral over R.
e If R’ = R, then Ris called integrally closed in 7.

Remark 9.2.8. The closure R is subring of 7' (since sum, difference, product of
integral are integral).

Lemma9.2.9. Let R < S < T be rings, if S is integral over R, and T is integral over S,
then T is integral over R.

Proof. Leta € T, then 3sy,- -+ , s, € S such that o™ + s;a™ ' + -+ + s, = 0. Hence
R[s1,- -+, Sn, ] is finitely generated R[si,---,s,|—module and R[si,---,s,] is
finitely generated R—module. Therefore R|si,--- sy, ] is finitely generated
R—module. Then « is integral over R. O

Corollary 9.2.10. The closure R'is integrally closed in T
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Proof. Apply lemma, R < R < ?T. By lemma any element of ?T is integral
over R hence in ' . Thus ?T oy O
Lemma 9.2.11. Let R < T be rings, with T integral over R, then

(1). forall J < T ideal, T/J is integral over (R + J)/J(~ R/(R n J)).

(2). Forall S < R multiplicative set, S~'T is integral over ST R.
Proof. Need to prove that

(1). Forall v € T, o + J is integral over (R + J)/J.

(2). Foralla e T, forall s € S, ¢ is integral over S™'R.

Exercise. O

Lemma 9.2.12 (Localization commutes with integral closure). Let R < T be rings,
—1 o
and let S < R multiplicative set, then SR = Sfl(RT).

Proof. (=): By statement (2) in previous lemma (ET is integral over 12 implies that
S'R' is integral over S'R).
- g-1
(S): Wehave ¢ e SR " — 3, eR,s€R, (S +(E)E) e (5) =0

Sn

Then multiply by (ss; - - - s,,)" implies that (ts;---s,)" 4+ --- = 0. Thus ts;--- s, is
integral over R. Hence £ = &1 ¢ SR O

881"Sn

Definition 9.2.13. A domain R is called integrally closed if it is integrally closed
in its field of fraction.

Example 9.2.14. We have

e 7Z° = Zhence Zis integrally closed.

* Any UFD is integrally closed (same proof as for 7).

Proposition 9.2.15 (Integrally closed is a local property). For a domain R, the fol-
lowing are equivalent:

(1). The domain R is integrally closed.
(2). The local ring Rp is integrally closed for all P < R prime ideal.
(3). The local ring Rp is integrally closed for all P = R maximal ideal.
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Proof. Let K be the field of fraction of R, for all P prime, we have R < Rp € K =

Rypy. Hence K is a field of fractions of Rp. Let C' = R By previous lemma,
Op = (RP)K. Let
¢o: R— C,

re—r,

be embedding map, and for P < R prime, let

¢p: Rp — Cbp,

localization of ¢ at P, we have
(1) < ¢ surjective,
(2) <= ¢p surjective VP < R prime,

(3) «< ¢p surjective VP < R maximal.

The 3 statements are equivalent since “being surjective is a local property”. [

9.3 Going Up/Down Theorems

Remark 9.3.1. Let R < T be rings such that for all J < T"ideal, J n R is ideal, and
VJ < T prime ideal, J n R prime (indeed R n J is contraction of J for embedding
map R — T'). We will show that if 7" integral over R, then any prime ideal of R is
of this form.

Lemma 9.3.2. Let R < T be domains and T is integral over R, then T is a field if and
only if R is a field.

Proof. Exercise. O

Corollary 9.3.3. Let R < T be a ring such that T is integral over R, let Q < T be a
maximal ideal of T', then ) is maximal in T if and only if Q N R is maximal in R.

Proof. We have T'/Q), R/R n () are domains (since (), () N R are prime). By lemma,
T/Q is integral over (R + ))/Q) ~ R/R n Q. Hence () is maximal if and only if
T/Q is a field if and only if R/R n Q is a field if and only if R n @) is maximal. [

Corollary 9.3.4. Let R < T be rings, T integral over R, let () = Q)" < T be prime ideals.
IfQNnR=0Q nRthen @ = Q.
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Proof. Assume Q n R = @)’ n R, then the ideal P = @) n R is prime ideal of R.
By lemma, Tp is integral over Rp (here Tp = ST, S = R\P). The localization
of Qp,Qp satisfy Qp n Rp = Q» n Rp = (Q n R)p = Pp maximal ideal of Rp.
By Corollary 9.3.3, Qp, Q)» are maximal ideals of Tp. Since Qp = (), we get
Qp = Q. Moreover, () and ()’ are prime and not intersecting S = R\P. Hence
they are contractions via localization at P. Hence Q = Q% = Q% = Q. O

Theorem 9.3.5. Let R < T be rings, T' integral over R, for all P < R prime ideal of R,
there is () < T prime ideal of T such that P = Q n R.

Proof. We have that T integral over Rp. Moreover, the diagram

R—% s T

Jo e

RP T) TP
where o, f embedding map, ¢, ¢ localization maps is commutative (r — 7 € Tp).
Let M be a maximal ideal of Tp, then 371 (M) = M n Rp is maximal ideal of Rp
(by Corollary 9.3.3). Hence ~'(M) = Pp and thus ¢ (37!(M)) = P. Therefore
P =a (¢ ' (M)) = Rny (M) where the last term is prime ideal of T'. O

Corollary 9.3.6 (Going Up Theorem). Let R < T be rings, T integral over R, let
P, < P, < R be prime ideal, let (), prime ideal of T, such that P, = Q1 n R, then
Q)2 2 Q1 prime ideal of T such that P, = Q2 N R.
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Proof. By previous lemma, 7'/ is integral over R + )1/Q1 ~ R/P, and /P,
is prime in R/P;. Hence by previous theorem, there is Q2 < 7/Q; such that
Py/P, = Q2 n R/P; and Qy = Q2/Q; for some Q; 2 @, prime ideal of T. Hence
P,/P, = (Q2 n R)/P,. Therefore, P, = Q> N R. O

Corollary 9.3.7. The dimension dim R = dim 7.
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Dedekind Domains and Discrete Valuation Rings

10.1 Basic Definitions and Results

Recall:

¢ A Dedekind domain is a Noetherian domain of dimension 1 which is inte-
grally closed.

* In Noetherian domain of dimension 1, any ideal I # 0 can be written
uniquely as [ = [ [ Q; with @; primary with distinct radicals.

Goal: show that in Dedekind domain, / # 0 has a unique factorization / =
[1 P where P, are prime ideals.
Motivations:

Definition 10.1.1. We say
* An algebraic number field is a finite algebraic extension L of Q.
e Its ring of integers is z"

Example 10.1.2. Let L = Q[7] be an algebraic number field and then Z[:] is its ring
of integers.

Theorem 10.1.3. The ring of integers z" of any algebraic number field is a Dedekind
domain.

Lemma 10.1.4. Let R be a domain integrally closed in its field of fraction K. If L is a

finite separable extension of I, then there exists by, - -- , b, basis of L over K such that
R b, b
Proof. Skipped (field theory). O
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Proof of Theorem 10.1.3. To show Dedekind domain, we are to show
e itis Noetherian domain,
e itis dimension 1,
* itis integrally closed.
We see
. ZL is a domain since it is included in L, which is a field.

¢ Since K = Q has characteristic zero, any extension of Q is separable.

Hence lemma gives Z"c Z(by, - - , by, is finitely generated Z—module. Since Z is
PID, we have Z' is finitely generated Z—module. Also since Z is Noetherian, we

have Z" is Noetherian (finitely generated algebraic over Noetherian). Hence we
have

. ZL is integrally closed in its field of fraction K since K < L,

. dim(ZL) = dim(Z) = 1 since dimension of integral extension equals the
dimension of the ring.

Hence the theorem is proved. O
Definition 10.1.5. Let K be a field. A discrete valuation is v : K* — Z such that
* v is surjective,
* v(zy) = v(z) +v(y),
* v(z +y) = min(v(z),v(y)).
(v is surjective group homomorphism (K>, x) — (Z, +)). We get v(0) = +o0.

Example 10.1.6. Let K = Q, given p prime number we define v,(q) = k if ¢ = p*¢
where pta,p1b.

Remark 10.1.7. We have v(1) = 0,v(z7!) = —v(z),v(-1) = —v(=1) = 0,v(—2x) =
v(z). We also have K, = {z € K|v(z) = 0} is a subring of K.

Definition 10.1.8. The ring R is a discrete valuation ring (d.v.r) if R = K, for
some field K and discrete valuation v.

Example 10.1.9. We have Z,) = {{|p { b} is a d.v.r since Z,) = Q,, with v, defined
as before.
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Remark 10.1.10. We have the following facts:
e Forany d.vr K,,Vz € K, either z or 27! is in K.
e Anelement z € K, is invertible if and only if v(z) = 0.
e If0 < v(z) < v(y) then z|y in K, (because yz~! € K,).

Theorem 10.1.11. Let R be a ring, then R is a local Dedekind domain if and only if R is
a d.v.r. Moreover, the following are equivalent properties for a local Noetherian domain of
dimension 1:

(1). The ring R is integrally closed (hence local Dedekind).
(2). The maximal ideal M < R is principal (generated by a single element).
(3). Everyideal I # 0 is a power of the maximal ideal M.
(4). There exists p € R such that every ideal is of the form (p").
(5). Thering Risad.v.r.
Proof. («<=): We see

e Let Rbead.vr. Letp e R,v(p) = 1. For I # 0ideal, and let £ = min,¢;(v(x)).
Then there exists = € I, v(z) = k = v(p*). This implies p* € I (since z|p*) and
I = (p¥) (since for all y € I,v(p*) < v(y) = p*|y). Given that the nonzero
ideal are (p) 2 (p?) 2 (p?) 2 ---, it is clear that R is Noetherian, local of
dimension 1 (unique nonzero prime ideal is (p)).

e Lastly R is integrally closed, let & € K field of fractions of R. Suppose
Iry,---,r, € Rsuchthata” + ma™ '+ ---4+r,=0.Ifa¢ R, thena ' e R
(since Ris d.v.r). Hence a = —r; —mpa™! — - —r (e )" 1 e R.

(=): It suffices to show (1) = (2) = (3) = (4) = (5) (we have already
proved (5) = (1)). We prove

(1) = (2) and (2) = (3) are left as homework.

(3) = (4): We have M? < M and M? # M (because M = J Jacobson radical),
hence there exists p € M\M?. Then n, (p) = M" implies that (p) = M and thus
for all k, M* = (p*).

(4) = (5): Take M = (p) is the unique maximal ideal, hence (p) = J Jacobson
radical, for all , ( M) (p*) (because J - N = N implies N = 0). Hence for any
r € R\{0},3k = 0, (x) = (p*) and we define v(z) = k. We extend v to the field of
fractions K of R by v(3) = v(a) —v(b). Itis easy to see that R = K,,isad.vr. [J

Theorem 10.1.12. Let R be a Noetherian domain of dimension 1, the following are equiv-
alent:
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(a). Ris integrally closed (hence Dedekind).
(b). Forall P < R prime, Rp is a local Dedekind (equivalent to a d.v.r).
(c). Every primary ideal is a power of prime ideal.
(d). Every nonzero ideal has a unique factorization into prime ideals.
Lemma 10.1.13. Ideal P maximal implies that P" primary for all n (homework).

Proof of Theorem 10.1.12. (a) = (b): integrally closed is a local property.

(b) = (c): Let @) be primary ideal and let P = r((Q), then () primary implies
that @ = Q° for R — Rp. Then Rp local Dedekind implies that Q¢ = Qp is a
power of the maximal Pp. Hence Q = (PE)° = ((P*)p)° = (P*)* = P* where P*
is primary as power of maximal.

(¢) = (b): Let P be prime ideal, want to show Rp is local Dedekind by pre-
vious theorem, it suffices to show that any ideal of p is a power of Pp. [We skip
the fact that () has RPD and localizations].

(c) = (d): Existence: I = | [ Q; with @); primary (already shown) implies that
I = [ P by (c). Uniqueness: We have {Q,,--- ,Q,} is unique (already shown).
Hence we see PY = P'¥ which implies 7(P%) = r(P'¥) hence P = P'. Further,
P? = P? implies d = d’ because P* = P**! implies P% = Pp*! implies Pp = 0 by
Nakayama lemma, hence impossible (since it is a domain).

(d) = (c): Let Q be primary, Q = [[ P* implies that 7(Q) = (r(P*) = N P,
Also TSQ) prime hence r(Q) = ()P, hence (Q) = P, for some i. This shows
Q= P". O
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Motivational Examples

11.1 Chains of Modules

Let R be a ring, R — Mod = category of R—modules (left R—modules).

Definition 11.1.1. A chain complex (in R — Mod) is C, = (Cy)nso and d, =
(dy)n>0 where C,, is R—module, d,, : C,, — C,_; is R—module homomorphism
such thatd, od,,.;1 =0

~—>Cgﬁ>C’1£>C’o.
Example 11.1.2. Take C\ associated to the simplicial complex such that C,, = Z{n—
cell), d,, :“boundary maps”.
Definition 11.1.3. Let (C,,d.) be chain complex (in R — Nlod), we denote that
Z,(Cy) = ker(d,) < C,, namely the “cycles” and B, (C,) = Im(d,+1) < C,
“boundaries”. Since d,d,;; = 0 and B, < Z, and we can take quotient
H,(C.) = Z,/B,, the n—th homology group of C..
Example 11.1.4. Consider the torus with H;(C\) = Z cycles/Z contractible cycles.

Remark 11.1.5. Chain C, is exact if and only if H,(C,) = 0Vn. Hence H,(C) is
the measure of non-exactness of the n—th step.

Definition 11.1.6. Let C,, C;, be chain complexes. A chain map f,. : C, — C,
is fx = (fu)n = 0, and f,, : C, — C], module homomorphism such that “every
squares commute” in

d
» Cp, —— Chq g y Co
f'nl lfnfl
dl
n
> O > Oy > > C)

and df = fd'.
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Example 11.1.7. If C,, C) are associated with some simplicial complexes... To be
filled.

Remark 11.1.8. If f, : ', — C, is a chain map, then for all n, f,, sends cycles to
cycles (boundaries to boundaries).

In f(Z,(Cy)) € Z,(C.) because df (Z,(Cy)) = fd(Z,(Cy)) = fO = 0. Moreover,
fu(Bn(Ch)) S Ba(CY) because f(dc,,,) = df (Cps1) S Imd.

Definition 11.1.9. Let f, : C, — (', be a chain map, by preceding remark we can
define o
fn : Hn(C*) - Hn(O:k>7

a+ By(Cy) — fula) + Bu(CY)

where a € Z,(C,). This is a well-defined homomorphism by preceding remark
(sends boundaries to boundaries).

Remark 11.1.10. Composition of chain maps are chain maps, that is, f, o g, =
fn © gn (functoriality).

Definition 11.1.11 (Chain Homotopy). Let f., g, : C, — C, be chain maps. We
say that f., g. are homotopy equivalent if there exists h = (h,,)n>0, hn : Cr, — C) 4
R—module homomorphism such that for all n, f,, — g, = hy,—1d, + d,,1hy. It can
be viewed as

dn+1
———— Caa » Cpog —————

/ ug“/ e

where we have notation f, f Gs.

!
s
C1n+1

Example 11.1.12. To be filled.

Lemma 11.1.13. If chain maps f, g. : C. —> C., are homotopy equivalent, then fu =
Gn - Hy(Cy) — H,(CY).

Proof. Suppose f. =~ G, foralla € Z,(Cy), fu(a) —gn(a) = dh(a) +hd(a) = dh(a) €
B, (C). Hence Fo(a) = (@) + Ba(CL) = ga(a) + Ba(CY) = gla). =

Definition 11.1.14. Two chain complex C,, C;, are homotopy equivalent if there is
chainmaps f, : C, — C; and g, : C;, — C, suchthat g,of, ~ Id¢,, fiog: ~ Idcy,.

Corollary 11.1.15. If C.., C;, are homotopy equivalent then for all n, we have H,(C,) ~
H, (C) isomorphism of R—module.
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Proof. By lemmag,o f, = Id Hy(Cy) and foogn =1d m,(c;)- Hence £, Gn, are isomor-
phism. O

Definition 11.1.16. We have the following definitions:

* A resolution for a R—module M is an exact sequence of the form --- —
Cy — Cy — Cy — M — 0. Abbreviated by C, — M — 0.

e A free resolution is a resolution such that for all n, C,, is free R—module:
(Co — M — 0).

Lemma 11.1.17. We have the following statements:

(a). For any R—module N, there exists free R—module F and ¢ : F — N surjective
R—module homomorphism. That is, 3free F B VN.

(b). Forany F free, forany ¢ : F — N, forany 1 : N' — N surjective homomorphism,
there exists ¢’ such that ¢ o ¢' = ¢. That is, the diagram

F free

N/v—w»N

commuites.

Proof. Exercise. Easy consequence of the fact that if F is free with basis {b;}, then
for any M module, for all {z;} < M, thereis ¢ : FF — M such that ¢(b;) = ;. O

Theorem 11.1.18 (Fundamental Theorem of Homological Algebra). We have
e forall M, R—module, there is free resolution C,, — M — 0, and

o forall f: M — M’ homomorphism, for any free resolution, C, — M — 0 and
C,, — M' — 0. There is f, : C, —> C', chain map “lifting f”, the diagram

do

> (o >y M > 0
lfo lf
! d6 !
C) > M » 0

commutes with dy fo = fdy. Moreover, we have

— the free resolution C. of M is unique up to homotopy, and

— the lifting f. of f is unique up to homotopy.
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Proof. We see

* Existence of free resolution: applying (a) to N = M gives Cy, d, that C Gl
M — 0. Applying (a) to N = ker(dy) gives Cy,ds, - - - , etc.

* Existence of chain map lifting f :
C, —— C,,_1 > Co s M =C_1 —— 0
[N s

/ ! N \ /
(jn _____+ (jnfl 7 7 (70

<
I

Q
o

for all n > 0, we need to find f, from f,,_; (such that d'f = fd).

Observe that f,,_,0d,(C,,) < ker(d],_,) since d,, o f,—10d, = d,,_,od,_,of, =
Osinced, ,od, ; =0.So we have

C,, free

: fnfldn
3:
<

cl — Im(d)) = ker(d,_,)

By (b), thereis f,, : C,, — C;, such thatd,, f,, = f,_1d,.
Then we see

¢ Uniqueness of f. up to homotopy. Suppose f.,g. both lift f : M — M’
Then I, = f, — gy lifts 0 : M — M’. We want to find (h,), h, : C, — C) 4
such that ! = hd + d'h. How about hy? We have the diagram

COL)M

ho
0. llo ll—o
L

and want [y = d}hy. Since d{lo = 0dy = 0, we have

commutes. By (b), there is i such that [, = d; o hy.
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For n > 0, we want h,, such that d, ,h,, = l,, — h,_1d,, such that

dn
Cp, — Ch

commutes. We have also

lln_hn—ldn .

Clyy — ker(d,) = Im(d, )

(Indeed, d' (I, — hn_1dy) = lprdy — dhyrdy = (lioy — dihy1)d, =
hy—od,_1d, = 0). By (b), there is h, such that d, ,,h, = I, — hy,_1d,.

* Uniqueness of free resolution up to homotopy: let C,, - M — 0,C;, — M —
0 be free resolution of M. There is f, : C, — C. lifted Id : M — M, and
g« : O, — Cy lifted Id : M — M. Then g, f. : Cx — C\ lifts Id,; implies that
g« [ = Ide, and fig. : C — C} lifts Idy, implies that f.g. ~ Id¢,,.

Generalizations? Projective modules. O

11.2 Projective Modules

Definition 11.2.1. A R—module P is projective if it satisfies

P

3¢'§ w}
M N

V1) surjective

commuting (prop (b) of free module).
Remark 11.2.2. We have

* By lemma 11.1.17 (b), any free module is projective. By (a), for any N €
R — Mod, there is P projective and ¢ : P — N surjective. “R — Mod has
enough projective.” This implies that for any M € R — Nlod, there exists
P* — M — 0 projective resolution of M.
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¢ The theorem remains true if we replace “free” by “projective” everywhere.
(existence of projective resolution by above, existence of f*, uniqueness up
to homotopy only use (b) = definition of projective).

* Reversing arrows.

Definition 11.2.3. A R—module F is injective if it satisfies

M V1) injective . N
v¢l /
; R

commuting.

Definition 11.2.4. An injective coresolution for a R—module M is
0— M- FE 2 E —Ey—>s -

exact sequence with £, injective module.

Question: Do they exist? Existence amounts to showing for any IV, there exists
F injective and N »— F injective homomorphism.

Exercise: show that when they exist, injective coresolution are unique up to
homotopy.

More general categories: How to define “exact sequence” in a category? How
about surjective, injective, kernel, images (H,, = Z,,/B,)? This leads us to Abelian
categories

CC* . M . 0
f| |

F(C,) FM

~
)

g
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Additive Categories

12.1 Category Notations

Let C be a category, then
¢ A e C means Ais an object of C.

* For objects A, B € C, we denote C(A, B), which is the set Moz¢(A, B) of
C—morphisms from A to B.

We denote Set the category of sets.

We denote R — Nod category of left R—module, and Mod — R category of
right R—module.

* We denote A6 = Z—Mod category of Abelian group.
Definition 12.1.1. We have

e f e C(A, B) is a monomorphism if for all X € C,Vg; # ¢g» € C(X, A), we
have fg, # fgs, thatis

(i.e., fg1 = fg. implies g; = g» can simplify f on the left). We write f : A —
B to indicate f is a monomorphism.
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e f e C(A, B)is an epimorphism if for any X € C,Vg, # g2 € C(B, X), 91 f #
gof . We write f : A — B, thatis,

Example 12.1.2. In Set and in R — Mod, f is monomorphism if and only if f is
injective. Also f is epimorphism if and only if f is surjective.

Notation: For f € C(A, B), we denote f4 : g — fg where g is in C(X, A) and
fgin C(X, B). Similarly we denote »f : g — g¢f where the first g is in C(B, X)
and gf in C(A4, X).

Remark 12.1.3. We have f is monomorphism if and only if f4 is injective. And f
is epimorphism if and only if 4 f injective.

Remark 12.1.4. We have f is isomorphism implies that f is monomorphism and
epimorphism (converse not always true).

Definition 12.1.5. An object P € C is projective if it satisfies

P

and forall A, Be C,Vg: P — B,Vh: A — B, thereis g : P — Asuchthat hg’ = g.
Similarly, an object E € C is injective if it satisfies

A" . p

39’ -
\‘:g

E
12.2 Additive Categories

Definition 12.2.1. An additive category is a category C such that forany A, B € C,
C(A, B) is an additive group and we have the following;:

(1). Operation is biadditive (f1 + f2)g = f1g + fag and g(f1 + f2) = gf1 + 9 /.

(2). The category C has a zero object Oc.
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(3). Any finite tuple of objects Ay, - - - , A, have a product. Thatis, [[;_, A;and a
coproduct [ [, A;.

Lemma 12.2.2. In C additive category, we have | [, A; ~ [ [, A
Example 12.2.3. Some examples of additive category:

* R —MNod, Nod — R.

* R —mod, mod — R, the category of finitely generated R—module.

Definition 12.2.4. Let f € C(A, B), akernel of fis K € C and ¢ € C(K, A) such
that

(1). we have fq =0, and

(2). for any X € C, for any g € C(X, A) such that fg = 0, there exists g such that
g = qg. We have the diagram

X
7] N
L
K244 ! s B

commutes.

Example 12.2.5. In R — Mod, and f as R—module homomorphism, let K = {a €
Alf(a) =0}, and
q: K — A,

a+——a.

Then (K, q) is the kernel of f in R — Mod.

Lemma 12.2.6. When f has a kernel, they are unique up to C—isomorphism, that is, we
have K, q kernel if the diagram

commutes.
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Remark 12.2.7. Let C be additive category and let f € C(A, B), for any X € C, the
map
f# : G<X7 A) - G(Xu B>7

g+— fg,

is homomorphism of additive group. Its kernel (in group sense) is ker(fx) =

{g]fg = 0}.

Lemma 12.2.8. Let C be additive category and f € C(A, B), then (K, q) is the kernel of
[ if and only if for any X € C, we have

o Im(gy) = ker(f4)(39),
* gy injective (317).

That is, we have the diagram

commutes if and only if for any X € C, we have 0 — C(X,K) > C(X, A) Jz,
C(X, B) is exact sequence of additive group.

Corollary 12.2.9. A C—morphism f is a monomorphism if and only if (0, 0) is the kernel

of f.
Proof. We have f monomorphism if and only if f4 is injective if and only if
ker(fy) = 0.

(<) :if (0,0) is a kernel of f, then ker(fx) = Im(0x) = 0, hence f is monomor-
phism.

(=) :If f is monomorphism, then ker(f4) = 0 implies that ¢ = O¢(g, 4 satisfies
o Im(gy) = 0 = kex(fy),
* ¢4 is injective (since C(X,0) = {0}).

Hence the corollary. O

Remark 12.2.10. If (K, g) is kernel of f then ¢ is monomorphism (since g is injec-
tive).

Definition 12.2.11. A cokernel of f € C(A, B) is (C,p),C € C,p € C(B,C) such
that
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(1). pf =0,

(2). forany X € C,Vg e C(B, X) such that gf = 0, there exists unique g : C' — X
such that g = pg, that is, the diagram

A ! sy B -2 (¢
N lvgk_.-“"jv!g
X

commutes.

Remark 12.2.12. In R — NMod, let f € Hom(A, B), let C = B/Im(f),p : B — C
quotient map, then (C,p) is a cokernel of f in R — Mod. Indeed, if gf = 0, it
means that Im(f) < ker(g), and we can define

g:C — X,
b+ Tm(f) — g(b),
and it is unique choice.

Lemma 12.2.13. Cokernels are unique up to C—isomorphism. Further, we have that
(C, p) cokernel of f if and only if we have both

o ker(yf) = Im(yp), and
* 4p is injective

are satisfied, if and only if VX € C, we have 0 — C(C, X) % €(B, X) 5 €(4, X) is
exact (recall that p : g — gp).

Remark 12.2.14. If (C, p) is a cokernel then 4p is epimorphism.

12.3 Exact Sequences, Exact Functors

Definition 12.3.1. Let C be additive category, a left exact sequence in C is 0 —
A-L B2 C with (A, f) is kernel of g.

Similarly, a right exact sequence in C is A L, B % ¢ - 0with (C,g) is
cokernel of g.

Further, a short exact sequence in Cis 0 — A L, B4 ¢ -0, with (A, f)is
kernel of g and (C, g) cokernel of f.

Remark 12.3.2. Match the classical definitions in R — Mod.
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Definition 12.3.3. Let C,® be additive categories, a covariant or contravariant
functor F : C — D is left exact if F (sfhortexact) is left exact.

Similarly, a covariant or contravariant functor & : ¢ — @ is right exact if
F (shortexact) is right exact.

Further, we say a covariant or contravariant functor & : ¢ — @ is exact if
F (shortexact) is short exact.

Explicitly, functor & covariant left exactif 0 - A — B — C' — 0 exact implies
that 0 - FA — 5B — FC exact. Functor & contravariant left exactif 0 - A —
B — C' — 0 exact implies that 0 - 5C — 5B — F A exact.

Definition 12.3.4. Let C be additive category and let X € C, we define
e Home(X, —) to be the covariant functor C — A6 defined by
A— C(X,A),
feC(A B) — fu:C(X,A) - C(X,B).
e Home(—, X) to be the contravariant functor C — A6 defined by
Ar— C(AX),

fr—%f

Remark 12.3.5. By lemmas about kernel, cokernel, we use that Home(—, X') and
Home (X, —) are left exact.

Proposition 12.3.6. We have
e if X € C is injective, then Home(—, X) exact.
* We have X € C is projective implies that Home (X, —) exact.

Proof. Homework. U
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Abelian Categories, Chains, and Homology

13.1 Abelian Categories

Definition 13.1.1. An additive category C is abelian if
(a). Every C—morphism has a kernel and a cokernel.

(b). If f € C(A, B) is monomorphism and g € C(B, () is epimorphism, then
(A, f) is a kernel of g if and only if (C, g) is cokernel of f (in this case 0 —
AL B4 - 0isexact).

(c). Every C—morphism f can be factored as f = f’f” with f” epimorphism and
" monomorphism, that is, we have the diagram

A ! s B
X

commutes.

Lemma 13.1.2. Let C abelian category, let f € C(A, B), suppose f = f'f" where f'
monomorphism and f" epimorphism, then

(a). We have (K, q) is kernel of f if and only if (K, q) is kernel of f". In this case
0->K%5AL X - 0exact.

(b). We have (C,p) is cokernel of f if and only of (C,p) cokernel of f'. In this case
0— X5 B2 C—0is exact.

86
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Proof of Part (a). Since f’ monomorphism, we have f”g = 0 if and only if fg = 0.
Also (K, q) kernel of f if and only if (f¢g = 0 — 3!7,¢9 = ¢9) if and only if
(f"g = 0= 317, g = qg) if and only if (X, q) kernel of f”. O

Definition 13.1.3. Let C abelian category and let f € C(A, B). If

A / s B

N

X

commutes, then we call X an image of f and write X = Im(f).

Lemma 13.1.4. Let C be abelian category, the image Im(f) is unique up to
C—isomorphism. Moreover, Im( f) ~ coker(ker(f)) ~ ker(coker(f)).

Proof. Suppose

A ! s B
N
X

commutes, we need to show X = coker(ker(f)). Let (K, q) be a kernel of f, then

0 K% AL X - 0is exact, which implies that X = coker(q) = coker(ker(f)).
Same for other formula. O

13.2 Chains

Definition 13.2.1. Let C abelian category, a C—chain is C, = (C,)n>0, dx = (dn)n>0
where d,, € C(C,,,C,,—1),dp11d,, = 0. A morphism of C—chains from C, to C, is
f« = (fn)nso0 and f,, € C(C,, C!) such that f,_1d,, = d, f,.

Remark 13.2.2. We have C—chains and their morphisms form a category denoted
C — chain.

Proposition 13.2.3. We have that C additive category then C — chain is additive cate-
gory. Similarly, C abelian category implies C — chain abelian category.

Proof. We have

* futgs= (fn +9n)/ and
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* Direct sum of chains? We have C, @ C), = (C,, @ C/,) defined by

dn@®d,,

C,eC, >y Cre1 @ C)

/

component wise and commutes. Exercise: Show that this is a direct sum in
C — chain.

e Kernels? Let f, : C, — C’, we have

ker(f,) LYo h o
3!an§ ldn ld;
ker(fo_1) — =t Oy — O

commutes and (ker(f,), (o)) is kernel of f,.

e Cokernels, factorization, etc...
Hence the result. O

Definition 13.2.4 (Homology). Let C be an abelian category, let C,,d,. be a C —

chain,let (Z,,q,) be kernel of d,,, then (since d,,d,,+1 = 0), there exists unique d::l
such that

Cn+1 dn+1 N Cn
Zn
|
H,(C,)

—~—

commutes. We define the homology H,,(C,) = coker(d,,+1).
Example 13.2.5. In R — 1Mod, we have

—~—

dpy1 2 Cpoy — Z, = ker(d,,)
x> dpiq1(x).

Then H,, = coker(ci;:l) = ker(d,)/Im(d,,1).
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Lemma 13.2.6. We have H,,(C..) unique up to isomorphism.

Definition 13.2.7. Let f, : C, — C, be morphism of C — cfhain, then we have

* there exists unique f such that

n+1
\ /

fn+1 lfn fn

e

Cl e

Cn+ 1 Cn

commutes by definition of (Z), ¢,,) the kernel of d,.

e There exists f, such that

—_—

CnJrl dot) > Zn o Hn(C*)

~

fn+1 Fn I

Cl

n+1

N

3~

=
—~
2
~—

commutes. We define H,(f.) = fn.

Lemma 13.2.8. For any n, we have H, is a functor from C — chain to C such that
[Hy(fxg+) = Hn(fs)Hn(g9+), Hy(1d,) = 1d] which is addtive, that is, H,(f« + g+) =
Hn(f*) + Hn(g*)

13.3 Dually, Cochain, etc

Definition 13.3.1. We define
e AC — cochainisCy -2 0 % Cy —> .- such that @% = 0.
* A morphism of C — cochain is (f,) such that fd = d'f.
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e For (C,d,) cochain, there exists d:;:l such that

Cn dot) ” CnJrl
N /87:;
coker(d,)

—~—

commutes. We say the cohomology H"(C.) = ker(d,1).

Example 13.3.2. In R — Nod, we have coker(d,) = C,/Im(d,). Here dor1 @ @ +
Im(d,) — dy41(z). Then H"(Cy) = ker(d,41) = ker(d,,+1)/Im(d,,).

Definition 13.3.3 (Homotopy). We say chain morphisms f,,g. : C, — C, are
homotopy equivalent if there exists (h,),>¢ in C(C,,C} ) such that f, — g, =
hyp—1d, + d}, .1 h,. Thatis, we have

dn

dp+1
Cn-‘rl - ” Cn > On—l
h
" fn 9n
hnfl
d’ d
+1
G — (], — G

commutes. We denote f, >~ .
Lemma 13.3.4. If f, =~ g then H,(f) = H.(g+).

Proof. We have H,, is additive, hence we have H,(f.) — H,(9+) = H,(d,) where
0y = hn_1d, + d),,  h,,. Want to show H,(6,,) = 0. We have the diagram

it g HL(CY)
;S\n/ E:Hn((s*)
— 7 > H,(C%)

’
dn+1 Pn
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and it suffices to show p/,6, = 0. From the diagram

dni1
Cn-i—l - ¢ On
% /
Zn

On+1 5n On

!

Zn
/ \
\
7

1 1
Cn—l—l C

n

~

we have ¢/,0,, = 0,q, = (foo1dn + d) 1 hy) g = d) 1 g, = qgﬂlhnqn. Since ¢/, is

n

monomorphism, we have that 5; = J;lhnqn. Hence p/,6,, = pl,dp11hnq, = 0 since
p;zdn+1 = 0. ]
Corollary 13.3.5. If C,, C', are homotopy equivalent C — chain (that is, there exists

fo: Co — Chogy : C, — C, such that f.g, = 1d, g.f« = 1d), then H,(C,) ~ H,(C.)
in C.
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Derived Functors

14.1 Projective Resolutions, Injective Coresolutions

Definition 14.1.1. Let C be abelian category, a sequence of C—morphism (f,,)a<n<b
is exact if there exists p, monomorphism, g, epimorphism such that f, = g¢,pn,
and we have the diagram

’ AnJrl

A, In
M %
X,

commutes and
| Pn+1
O—’Xnﬂ’ n+1n—+’Xn+1—>0

short exact.

Remark 14.1.2. The sequence (f,,) exact if Im(f,,) = ker(f,+1) for any a < n <,
where Im(f,,) = (X,,, p,) by abuse of notation.

Definition 14.1.3. A projective resolution of A € C is C\, d, such that

exact and C,, projective for any n.

Definition 14.1.4. We say that C has “enough projective” if for any X € C, there
is P € C projective and f : P — X epimorphism.

Lemma 14.1.5. If C has enough projective then any object has a projective resolution.

92
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Proof. Consider the diagram

f— O y Oy —2 5 A

~ 7

ker(dp)

etc... u
Proposition 14.1.6. We have

o IfC, — A, C, — A are projective resolution, then any f € C(A, A’) can be lifted
to a chain map f, : C\, — C, such that

(& > Co
[
1 Cy

N

commuites.
* Projective resolution are unique up to homotopy.
Proof. “Same” as in R — Nlod. O
Then we define things dually:

Definition 14.1.7. An injective coresolution for A € C is
0— A% %o — ...

exact with Cj injective.

Definition 14.1.8. We say C has “enough injective” if for any X € C, we have
X — F injective object.

Theorem 14.1.9. If C has enough injective, then any object has a injective coresolution
and it is unique up to homotopy. Moreover, any C—morphism can be lifted to a cochain
map between the injective coresolutions (lift is unique up to homotopy).

Definition 14.1.10. Let & : C — @ be additive functor between abelian categories,
F either left or right exact. If 7 is right (resp. left) exact we define the left (resp.
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right) derivative L"F (resp. R"F) : C — D as follows

A — E, injective coresolu-
tions of A.

Derivative
F covariant contravariant
right exact L"F(A) = H,(FP,), and | L"F(A) = H"(FE,), and
P, — A projective resolu- | A — E, injective coresolu-
tions of A. tions of A. '
left exact R"¥(A) = H"(FE,), and | R"F(A) = H,(FP,), and

P, — A projective resolu-
tions of A.

More precisely, for F' covariant right exact

e forany A € C, we have L"(F(A)) = H,(FP,) where --- — P

dz d1

A — 0 is projective resolution, and F'P, is the @ —chain - - - 7% Fp

FP.

—>P0—>

Fdy

—

e For any f € C(A, B), we have L"(F(f)) = H,(F f.) where f, is a lift of f
between projective resolution P, — A and P, — B and F(f.) = (¥ fu)ns0 is
the corresponding @ —chain morphism between & P, and 7 P;.

Remark 14.1.11. Derivatives are only defined if C has enough injective or projec-
tive (depending on the case).

Lemma 14.1.12. Derivatives are well-defined up to D —isomorphism and L°F = F for
F right exact, and R°F = F for F left exact.

Proof. For & covariant right exact,

* let A € C and P,, P, be projective resolution of A by previous theorem, P, ~

P; for some homotopy h. Then & additive implies that F P, ~ F P, implies
H,(FP,) ~ H,(FP.) (we have f,g. ~ Id implies that 7 (f,) % (gx) = Id).

e For f € C(A, B), let f., f. be lifts of f, by theorem f, ~ fi we have F(f,)

F(fi). This implies that H,,(f.) = H,(f).

~

Fh

e We have L°F(A) = Hy(FP,) for P, — A projective resolutions of A. Then

F right exact and P, — A — 0 exact which implies that 7 P, 7% F P,
FA — 0 exact. Thus coker(Fd;) = FA.

Fdo
—>
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14.2 Long Exact Sequences

Theorem 14.2.1 (Snake Lemma). Let C be an additive category, suppose C—diagram
A > A » A7 —— 0
bl

0 > B » B > B”

commutes and is row exact. Let (K,q),(K',q),(K",q") kernels of d,d d" and
(C,p), (C",p), (C",p") cokernels, then there is a, 3, &, B', 6, such that

K"K — »K

N .

A—>A— A

1]

B —»B—» B

L

A o

(the diagram borrows from here) commutes and
K/L)KLK//L)C/L')CLC//
is exact.

Theorem 14.2.2. Let C be abelian category, if 0 — A, — B, — C, — 0 is exact
sequence of C—chains, then there exists (3,,)n~0 such that

= Hy(Ay) = Ho(By) — Hy(Cy) > Hyoa(As) = Hoa(By) = -+

is exact.
Lemma 14.2.3. Alternative definition of H,(C\) for C, a C—chain is

d dn—1
C, - sy Chpry ——————

I e

coker(dy+1) ST ker(d,—1)
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and H,_, = coker(d,) (easy to see from definition of H,). Also H, = ker(d,) (not
obvious it coincide with definition of H,,).

Example 14.2.4. Check this in R — 1od.
Proof of Theorem 14.2.2. Letn > 0, then

commutes and row exact. By snake lemma, we have
0 — ker(d?}) — ker(d?) — ker(d9)

is exact and
coker(d?) — coker(d?) — coker(d$) — 0

is exact implies that

coker(d2,,) —— coker(d?, ;) —— coker(d<, )

dn, dn dn
ker(d4 ) —— ker(d? |) ——— ker(dS )

commutes. Hence snake goes through H,:

H,(A) — Hy(B) — H,(C) —> Hy 1(A) — H,_1(B) — H,(C).

Same story for cohomology. O

Theorem 14.2.5. Let C, D be abelian categories, let & : C — D be left or right exact
additive functors, let

0—A-LB-%50c—0
be short exact in C, then there is long exact sequence in D, such that
 for F covariant right exact
L IMFA) — 'FB — L'FC 2 A 5B S 50— 0

exact.
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e For & covariant left exact,

0— FA—FB— FC - RIFA
exact.

e For & contravariant right exact,

s DFAS FC— FB— FA—0
exact.

Proof for & covariant right exact. Claim 1: there is projective resolutions P, —
A, P, — B, P! — (' and chain maps f., g lifting f and ¢ and such that

0P PSP

is exact.
Claim 2: The sequence 0 — 5 P, — P, — F P, — 0is exact. Then can apply
the long exact sequence of homology on this 0 —chain which gives the result. [

Proof of Claim 1 (Horseshoe lemma). We have the diagram

P Py
il |
P} Py
il |-
> > A F B——C > 0

Let P/ — A be projective resolution of A and P — C be projective resolution of
C.LetP,=P ®P! Letp, : P, — P, pl: P, — P! be projection: (P,,pl,p!) is
product of P, P} via C. Let ¢, : P, — P,,q. : P, — P, be embedding: (P,,q,,q))
is coproduct.

We can choose them such that p! ¢/, = Idp:, )¢, = 0,p,,q, = 0, prq, = 1d, q,p}, +
q;;p{r,z = Idpn Then dg :

Pl q6 N P Po N P//
0 7 170 7 L7
d do? &
0 f d6 h 0
<
A > B s C
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We have g epimorphism, p{ projective implies that there is h, gh = djj. Let dy =
fdypi + hpy. It commutes and dj is epimorphism (check).
How about d;? We have dy, d;, dj are epimorphism, then snake lemma implies

0 —— ker(d)) —— ker(dy) —— ker(d!) ——— 0

T

P 3

9%

=)
X

exact. Hence we have same situation as for d:

~
o

0 > P ! > P/

L

ker(dj) ———— ker(dy) ——— ker(dy})
Then left for homework that (P, @ P)) = F(P!) ® F(P)) implies that
0— FP, —> FP, —> FP' — 0

is exact. O]

14.3 Tor Functors

Definition 14.3.1. Let R be commutative ring, let A be R—module, let 74 = A®— :
R — Nlod — R — Nlod defined by

VBe R —MNod,F4(B) = AR B,
Vf e R — Nlod homomorphism, F4(f) = Ids ® f.
Say 74 covariant additive functor, we have seen before that 7 is right exact, then
Tor, (A, B) = L"FA(B) = H,(A® P)

where the last term is from F4(P;), where P, — B — 0 is projective resolution for

B. In other words, Tor, (4, B) = ker(Id4 ® d?)/Im(Id4 ® dZ,,) where --- — P &
PO — B — 0.
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Example 14.3.2. Let R = Z, A a Z—module (additive group) and B = Z/nZ, then

Tor, (A, B) = ker(Id, ®d,,)/Im(Id4 @ dp+1). Take P, tobe 0 — Z B Z — Z/nZ — 0
where d;(z) = nz. Then

Tory(AZ/nZ) = ker(0)/Im(Idy ® d1) = AQZ/AR®nZ ~ A/nA(~ AR Z/nZ).

Also ~
Tory(A,Z/nZ) = ker(Ida ® dq)/0 ~ ker(d;)

by AQZ ~ A = {a € Alna = 0} where d; : A — Aby z — nz. Further,
Tor, (A, Z/nZ) = 0,Yn > 0.

Proposition 14.3.3. We have Tor, (A, B) ~ Tor,(B, A).

14.4 Ext Functors

Definition 14.4.1. Let C be abelian category and let A € C, the functor ¥ =
Home (A, —) : € — A6 is covariant additive and left exact and

VB e C,F(B) = C(A, B),

Vf € G(BvB/)vg(f) = f#
where f4 is
C(A,B) — C(A, B')
g—fg

Then Ext, (A, B) = R"F(B) = H"(C(A, B,)) where the last term is from ¥ (B,)
where 0 — B — B, injective coresolution of B. Explicitly, take

dn > B dn+1\

n 7

g 9
h

A

~

0 » B y By y B

for any n > 0, we have
Ext, (A, B) = ker(d,1#)/Im(d,#)

={g€ C(A, B,)|dn+19 = 0}/{d,h|h € C(A, B,_1)}.
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Remark 14.4.2. Let B € C, F' = Home(—, B) : C — A6 contravariant left exact. By
definition, R"F(A) = H"(C(As, B)) where A, — A — 0 projective resolution of
A. Explicitly we have

dn+l dn
> A, >

;

e
E
S

and R"F(A) = ker(#d,.1)/Im(#d,)
= {9 € C(Ay, B)|gdns1 = 0}/{hd,|h € C(An—1, B)}.

Theorem 14.4.3. We have H,,(C(A, B)) ~ H"(A,, B) so both give Ext,,(A, B). In fact,
both are isomorphic to the additive group

Gy = {f« : A™ — B™ chain map} /homotopy

where
A = AnHﬂAn > Ay y A > 0
o |
B™M — 0 » B > By > B

Sketch of Proof. Let f, : A™ — B and f, = (b;)o<i<ns+1 chain map. By definition
of chain map f, € ker(#d2,,) and f,.1 € ker(d?, ,#). Moreover (to check) for
any fy € ker(#d4, ), there is f, lifting of f; to A™ — B and f, is unique up to
homotopy because A* — A — 0 exact, and B, injective. For any f,,.1 € ker(dZ, ,#)
there is f, lifting, unique up to homotopy. This gives surjective homomorphism

o : ker(#dﬁﬂ) — Gy,

v ker(dy 1 #) — Gy.
Moreover (check) ker ¢ = Im(#d:} and ker 1) = Im(dZ#). Hence the isomorphism

\
7

> A, 5 5
s B / )




14.4. EXT FUNCTORS 101

Definition 14.4.4. Ext

dn d
ATL+1 +1> An > An—l > o > AO ’——’?_,4\4 A > 0
fol fll ”’_,—"”"——”’fn\[ fn+1l
0 y B =", B, o > Bn_1 > B, > By

Additional interpretation of Ext,,, for n > 0lete,(A,B) = {0 - B - C; —
-+ — (,, > A — 0 exact sequence}/ ~ where

0>B—>C,>A—>0~0>B—-C.—>A-0

if there is g, : C, — C} chain map such that

Ch > > O,
A 91 gn B
¢4 .

commutes.
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The Category R-Mod Has Enough Injective

Definition 15.0.1. For any

commutes, for any o : A — B injective R—module homomorphism, for any f :
A — E'homomorphism, thereis f : B — E such that f = fa.

Lemma 15.0.2 (Baer’s Criterion). A R—module E is injective if and only if for any

I < Rideal, forany f : I — E, therezsf R—FE f = fewheree I — R is the
inclusion map.

Proof. (=) : Obvious ¢ is injective homomorphism.
(«=) : Suppose E satisfies this condition, let

a: A — injective homomorphism,

f A — E homomorphism.

Want to show that there is f : B — E such that f = fa. Let Q = {(X,h), X <
B submodule and h : B — E, f = ha} ordered by (X, h) < (X', /') if X < X" and
hl'x = h.

By Zorn’s Lemma, there is maximal element (X, k) € Q. If X = B, suppose
not, letb € B\X, let I = {r € R|rb € X}. This is ideal of R. By hypothesis (applied
tog:I — Ebyr— h(rb)). Thereisg : R — E such thatr € I,§(r) = h(rb). Define

X' =X +(b),
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n:X — E,
x4+ 1rb— h(X)+g(r).
We see (X, h) < (X', 1) contradicting the maximality of (X, h). O

Definition 15.0.3. Let R be a domain. A R—module M is divisible if Vo € M,Vd €
R,3y € M such that dy = .

Corollary 15.0.4. If Ris PID, then a R—module E is injective if and only if E is divisible.

Proof. («<=): Let E be divisible, we use Baer’s criterion to show E is injective.
Let I < R ideal, let € : I — R inclusion map, let f : I — E be R—module
homomorphism. Then R PID implies that / = (d). Let + = f(d) and let y such

that dy = x. We can define f( 1) =yand f( ) = ry and check that f = fe

(=): Let E injective, let z € E, letd e R, let f : (d) — E such that f(rd) = rx.
Then thereis f : R — E such that f = fe. Theny = f (1) satisfies dy = f(d) =
fd) = . O

Example 15.0.5. The modules Q and Q/Z are divisible Z—modules, hence injec-
tive Z—modules.

Theorem 15.0.6. For any ring R, the category R — Nlod has enough injectives: for any
M left R—module, there is E injective R—module and M — E injective R—module
homomorphism (same holds for Mod — R category of right R—modules).

Definition 15.0.7. We call the dual of a left/right R—module is the right/left
R—module. We write M " = Homgz (M, Q/Z). If M is left R—module, the R—action
is defined by Vr € R,V f € Homy (M, Q/Z) such that

(f-r) (@) := f(re).

This is a R—action ((f - - s)(z) = (f - 7)(sz) = f(rsz) = (f - (rs))(x)). If R is right
R—module we define

(r- f)(x) := f(ar).
Proposition 15.0.8. If I is a free right R—module, then F'* is injecitve left R—module.
Lemma 15.0.9. In C abelian, we have E injective if and only if Home(—, E) is exact.
Lemma 15.0.10. In C abelian, for any i, we have if E; injective then (P, E; is injective.
Proof. Homework. O

Remark 15.0.11. For any A, B that are left R—modules, say Hompg(4,B) =
{f left R—module homomorphism} is a right R—module with R—action defined
by for any r € R,Vf € Homg(A, B),(f - r)(x) := f(rz) (this is a R—action since
f-r-s=f-rs).



104

Lemma 15.0.12. For any A left R—module, we have Hompg(A, R") ~ A" (isomor-
phism of right R—module) where R is considered as a right R—module and R" =
Homgz(R,Q/Z) is a left R—module.

Proof. Let A be a left R—module, for f € Homg(A, R"),x € A,r € R we have

Homgz(R,Q/Z) = R" 5 f(x)(r) = f(z)(1-7) = (r- f(2))(1) = f(r-z)(1)

by the definition of action in R" and f homomorphism. Define

f:A—Q/Ze A",
z— f(z)(1).
Above computation shows that ¢ : Hompg(A4, R*) — A" such that [ — fis an
isomorphism of right R—modules. Then

—~—

» ¢ homomorphism since (f77(x)) = (f(@)(1) = J(r2)1) = fra) = (F -

* ¢ injective since f € Homp (A, R") is determined by f(y)(1),y € A4,

* ¢ surjective since g € A" is f for f € Homg(A, R") defined by f(z)(r) :=
g(r - x) (since f(z) = f(z)(1) = g(x)).

Hence the lemma. ]

Proof of Proposition 15.0.8. We have

* Q/Z is injective Z—module, hence by Lemma 15.0.9 we have Homy(—, Q/Z)
is exact.

* By Lemma 15.0.12, for any A € R —Mod, we have Hompg(A, R") =~
Hom(A,Q/Z) in Mod — R. Hence Hompg(—, R") and Homy(—, Q/Z)
R —Nlod — Nlod — R are isomorphic functors. Hence Hompz(—, R") is ex-
act. Therefore by Lemma 15.0.9, we have R" is injective in R — Mlod.

* Let F' be free right R—module, then F' ~ @,_; R for some set /. Hence
Fro~ Homz(@iel R7 Q/Z) = Hz‘e[ HOmz(R,@/Z) = Hz’e] R". By Lemma
15.0.10, we have F'* ~ [ [ R" is injective.

Hence the proposition. O

Proposition 15.0.13. For any M left R—module, there is F free right R—module and an
injective R—module homomorphism M — F".
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Proposition 15.0.8 and Proposition 15.0.13 together implies Theorem 15.0.6.
That is, “R — Nlod” has enough injectives.

Lemma 15.0.14. For any M left R—module, there is injective R—module homomorphism
M — M"".

Proof. For x € M, let
ev, : M" — Q/Z,
evaluation at z. Note that ev, € M*" and

E,: M — M"",

T —> ev,.

Easy to check that £, is a R—module homomorphism. Indeed, for any r € R, Vx €
M,Yfe M", wehave

vro(f) = fra) = (f -r)(x) = eva(f ) = (r-eve)(f)

where the last equality is because it is action in M **. Hence E,(rz) = rE,(z). It
remains to show that F, is injective (—> check ker(E,) = 0).

Let x € M\{0}, need to show that ev, # 0. Let G := {kx : k € Z} < M
additive subgroup of (M, +) generated by =. Then G cyclic implies that G ~ Z or
G ~Z/nZ withn = 0 (z # 0).

If G ~7,welet

fG—)Q/Za
kx'—>E+Z.
z
If G ~ Z/nZ we let
fG—)Q/Za
kxv—»E—FZ.
n

In both cases, f is Z—module homomorphism since Q/Z injective, there exists
f € Homz(M,Q/Z) = M* such that

G - > M
N

commutes. Observe that f(z) # 0 implies f(x) # 0. Hence ev,(f) # 0 implies that
ev, # 0. O
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Proof of Proposition 15.0.13. The duality functor Homgz(—, Q/Z) is left exact (as any
Hom functor) and additive. Let M € R — Mlod, in Mod — R, there is F free and
B : F — M” surjective homomorphism. Since the duality functor is contravariant
left exact, the image of epimorphism [ is a monomorphism " : M"" »— F*.

HencewegetM>—>MM>6—>FAinm Mod. ]
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